Richard A. Corley

Learn More
A physiologically based pharmacokinetic model describing the disposition of chloroform in mice, rats, and humans was developed. This model was designed to facilitate extrapolations from high doses, such as those used in chronic rodent studies, to low doses that humans may be exposed to in the workplace or the environment. Kinetic constants for mice and rats(More)
An extensive database on the toxicity and modes of action of ethylene glycol (EG) has been developed over the past several decades. Although renal toxicity has long been recognized as a potential outcome, in recent years developmental toxicity, an effect observed only in rats and mice, has become the subject of extensive research and regulatory reviews to(More)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene,(More)
A complete mode of action human relevance analysis--as distinct from mode of action (MOA) analysis alone--depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institute's Risk Science Institute (ILSI RSI) published a(More)
Exposures to sufficiently high doses of ethylene glycol monomethyl ether (2-methoxyethanol, 2-ME) have been found to produce developmental effects in rodents and nonhuman primates. The acetic acid metabolite of 2-ME, 2-methoxyacetic acid (2-MAA), is the likely toxicant, and, as such, an understanding of the kinetics of 2-MAA is important when assessing the(More)
The metabolic series approach for risk assessment uses a dosimetry-based analysis to develop toxicity information for a group of metabolically linked compounds using pharmacokinetic (PK) data for each compound and toxicity data for the parent compound. The metabolic series approach for n-butyl acetate and its subsequent metabolites, n-butanol and n-butyric(More)
A physiologically based pharmacokinetic (PB-PK) model for CHCl3 has been used to prepare estimates of the probability that human populations exposed to low levels of CHCl3 will develop liver tumors similar to those seen in rodent bioassays. The PB-PK model for CHCl3 was based on a model reported earlier by Corley et al. (1990), but this model differed from(More)
A physiologically based pharmacokinetic model was developed to describe the disposition of 2-butoxyethanol (CAS 111-76-2) and its major metabolite, 2-butoxyacetic acid, in rats and humans. A previous human inhalation model by Johanson (Toxicol. Lett. 34, 23 (1986)) was expanded to include additional routes of exposure, physiological descriptions for rats,(More)
Computational fluid dynamic (CFD) models of the respiratory system provide a quantitative basis for extrapolating the localized dose of inhaled materials and improving human health risk assessments based upon inhalation studies conducted in animals. Nevertheless, model development and validation have historically been tedious and time-consuming tasks. In(More)
The kinetics of chloroform in the exhaled breath of human volunteers exposed skin-only via bath water (concentrations < 100 ppb) were analyzed using a physiologically based pharmacokinetic (PBPK) model. Significant increases in exhaled chloroform (and thus bioavailability) were observed as exposure temperatures were increased from 30 to 40 degrees C. The(More)