Learn More
Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at(More)
EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial(More)
Vast amounts of life sciences data are scattered around the world in the form of a variety of heterogeneous data sources. The need to be able to co-relate relevant information is fundamental to increase the overall knowledge and understanding of a specific subject. Bioinformaticians aspire to find ways to integrate biological data sources for this purpose(More)
The position of genes within the nucleus has been correlated with their transcriptional activity. The interchromosome domain model of nuclear organization suggests that genes preferentially locate at the surface of chromosome territories. Conversely, high resolution analysis of chromatin fibers suggests that chromosome territories do not present(More)
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the(More)
MOTIVATION The Edinburgh Mouse Atlas and Gene Expression Database project has developed a digital atlas of mouse development to provide a spatio-temporal framework for spatially mapped data such as in situ gene expression and cell lineage. As part of this database, a mouse embryo anatomy ontology has been created. A formalization of this anatomy is required(More)
The Edinburgh MouseAtlas Project (EMAP) is a time-series of mouse-embryo volumetric models. The models provide a context-free spatial framework onto which structural interpretations and experimental data can be mapped. This enables collation, comparison, and query of complex spatial patterns with respect to each other and with respect to known or(More)
EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a freely available, curated database of gene expression patterns generated by in situ techniques in the developing mouse embryo. It is unique in that it contains standardized spatial representations of the sites of gene expression for each gene, denoted against a set of virtual reference embryo models. As(More)
Digital brain atlases are used in neuro-science to characterize the spatial organization of neuronal structures [1–3], for planning and guidance during neurosur-gery [4,5], and as a reference for interpreting other modalities such as gene expression or proteomic data [6–9]. The field of digital atlasing is extensive, and includes high quality brain atlases(More)