Learn More
Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews(More)
A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based(More)
We present a method for constructing ensembles from libraries of thousands of models. Model libraries are generated using different learning algorithms and parameter settings. Forward stepwise selection is used to add to the ensemble the models that maximize its performance. Ensemble selection allows ensembles to be optimized to performance metric such as(More)
We examine the relationship between the predictions made by different learning algorithms and true posterior probabilities. We show that maximum margin methods such as boosted trees and boosted stumps push probability mass away from 0 and 1 yielding a characteristic sigmoid shaped distortion in the predicted probabilities. Models such as Naive Bayes, which(More)
This paper investigates whether a machine can automatically learn the task of finding, within a large collection of candidate responses, the answers to questions. The learning process consists of inspecting a collection of answered questions and characterizing the relation between question and answer with a statistical model. For the purpose of learning(More)
Many real-world domains bless us with a wealth of attributes to use for learning. This blessing is often a curse: most inductive methods generalize worse given too many attributes than if given a good subset of those attributes. We examine this problem for two learning tasks taken from a calendar scheduling domain. We show that ID3/C4.5 generalizes poorly(More)
ersonal software assistants that help users with tasks like finding information, scheduling calendars , or managing work flow will require significant customization to each individual user. For example , an assistant that helps schedule a user's calendar will have to know that user's scheduling preferences. This article explores the potential of(More)