Riccardo Sapienza

Learn More
Photonic crystals have proven their potential and are nowadays a familiar concept. They have been approached from many scientific and technological flanks. Among the many techniques devised to implement this technology self-assembly has always been one of great popularity surely due to its ease of access and the richness of results offered. Self-assembly is(More)
Self-assembly techniques are widely used to grow ordered structures such as, for example, opal-based photonic crystals. Here, we report on photonic glasses, new disordered materials obtained via a modified self-assembling technique. These random materials are solid thin films which exhibit rich novel light diffusion properties originating from the optical(More)
Resonant optical antennas are ideal for nanoscale nonlinear optical interactions due to their inherent strong local field enhancement. Indeed second- and third-order nonlinear response of gold nanoparticles has been reported. Here we compare the on- and off-resonance properties of aluminum, silver, and gold nanoantennas, by measuring two-photon(More)
We present a detailed study of the gain length in an active medium obtained by doping of DNA strands with 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye molecules. The superior thermal stability of the composite and its low quenching permit one to obtain an optical gain coefficient larger than 300 cm(-1). We also demonstrate that such(More)
We present a simple scheme to determine the diffusion properties of a thin slab of strongly scattering material by measuring the speckle contrast resulting from the transmission of a femtosecond pulse with controlled bandwidth. In contrast with previous methods, our scheme does not require time measurements nor interferometry. It is well adapted to the(More)
P. D. García,* R. Sapienza, J. Bertolotti, M. D. Martín, Á Blanco, A. Altube, L. Viña, D. S. Wiersma, and C. López Instituto de Ciencia de Materiales de Madrid (CSIC) and Unidad Asociada CSIC-UVigo, Cantoblanco 28049 Madrid, Spain European Laboratory for Nonlinear Spectroscopy & INFM-BEC, 50019 Sesto Fiorentino (Florence), Italy Departamento de Fisica de(More)
Plasmonic antennas integrated on silicon devices have large and yet unexplored potential for controlling and routing light signals. Here, we present theoretical calculations of a hybrid silicon-metallic system in which a single gold nanoantenna embedded in a single-mode silicon waveguide acts as a resonance-driven filter. As a consequence of scattering and(More)
Optical nanoantennas have revolutionised the way we manipulate single photons emitted by individual light sources in a nanostructured photonic environment. Complex plasmonic architectures allow for multiscale light control by shortening or stretching the light wavelength for a fixed operating frequency, meeting the size of the emitter and that of(More)