Learn More
at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial diierential equations of hyper-bolic type, developing shock discontinuities. The lectures were given by four outstanding scientists in the eld and reeect the state of the art of a broad spectrum of topics. The most modern and(More)
In vitro tissue engineering is investigated as a potential source of functional tissue constructs for cartilage repair, as well as a model system for controlled studies of cartilage development and function. Among the different kinds of devices for the cultivation of 3D cartilage cell colonies, we consider here polymeric scaffold-based perfusion(More)
In this work we present a mathematical model for the coupling between biomechanics and hemodynamics in the lamina cribrosa, a thin porous tissue at the base of the optic nerve head which is thought to be the site of injury in ocular neurodegenerative diseases such as glaucoma. In this exploratory two-dimensional investigation, the lamina cribrosa is modeled(More)
We report about two specific breakthroughs, relevant to the mathematical modeling and numerical simulation of tissue growth in the context of cartilage tissue engineering in vitro. The proposed models are intended to form the building blocks of a bottom-up multiscale analysis of tissue growth, the idea being that a full microscale analysis of the construct,(More)
In this article, we propose a novel discontinuous Galerkin method for convection-diffusion-reaction problems, characterized by three main properties. The first is that the method is hybridizable; this renders it efficiently implementable and competitive with the main existing methods for these problems. The second is that, when the method uses polynomial(More)
In this article, we propose a unified framework for Quantum–Corrected Drift–Diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical Drift–Diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum–correction to the electric(More)
Autoregulation of blood flow, the maintenance of relatively constant blood flow despite variations in pressure, is characteristic of many tissues, including the retina. Impaired retinal autoregulation has been shown to be a risk factor for glaucoma, suggesting that the relation between vascular regulatory mechanisms and glaucoma progression should be(More)