Learn More
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and(More)
We carry out an ab initio study of the structural, electronic, and magnetic properties of zigzag graphene nanoribbons on Cu(111), Ag(111), and Au(111). Both, H-free and H-terminated nanoribbons are considered revealing that the nanoribbons invariably possess edge states when deposited on these surfaces. In spite of this, they do not exhibit a significant(More)
The structure of self-assembled monolayers (SAMs) of long-chain alkyl sulfides on gold(111) has been resolved by density functional theory-based molecular dynamics simulations and grazing incidence x-ray diffraction for hexanethiol and methylthiol. The analysis of molecular dynamics trajectories and the relative energies of possible SAM structures suggest a(More)
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline(More)
Self-assembled monolayers (SAMs) of sulfur-containing organic molecules on bulk gold surfaces are among some of the currently most-studied molecule/metal interfaces, with potential applications ranging from nanolithography [1] and molecular electronics [2] to biosensors. [3] As such, there has been an intense effort on the part of the atomistic-simulations(More)
In this Article, Stefania Privitera and Emanuele Rimini are incorrectly listed as being affiliated with This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the(More)
Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the(More)
Magnetism in zigzag graphene nanoribbons (GNRs) has received enormous attention recently, due to the one-dimensional nature of this phenomenon, as well as its potential applications in the field of spintronics. In this work, we present a density functional theory (DFT) investigation of H-passivated GNRs on the (111) surface of the topological insulator(More)
Electronic phase-change memory devices take advantage of the different resistivity of two states, amorphous and crystalline, and the swift transitions between them in active phase-change materials (PCMs). In addition to these two distinct phases, multiple resistive states can be obtained by tuning the atomic disorder in the crystalline phase with heat(More)
It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y(More)