Riccardo Mazzarello

Learn More
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and(More)
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline(More)
In this Article, Stefania Privitera and Emanuele Rimini are incorrectly listed as being affiliated with This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the(More)
Phase-change materials exhibit fast and reversible transitions between an amorphous and a crystalline state at high temperature. The two states display resistivity contrast, which is exploited in phase-change memory devices. The technologically most important family of phase-change materials consists of Ge-Sb-Te alloys. In this work, we investigate the(More)
Magnetism in zigzag graphene nanoribbons (GNRs) has received enormous attention recently, due to the one-dimensional nature of this phenomenon, as well as its potential applications in the field of spintronics. In this work, we present a density functional theory (DFT) investigation of H-passivated GNRs on the (111) surface of the topological insulator(More)
Electronic phase-change memory devices take advantage of the different resistivity of two states, amorphous and crystalline, and the swift transitions between them in active phase-change materials (PCMs). In addition to these two distinct phases, multiple resistive states can be obtained by tuning the atomic disorder in the crystalline phase with heat(More)
It has recently been shown that a metal-insulator transition due to disorder occurs in the crystalline state of the GeSb2Te4 phase-change compound. The transition is triggered by the ordering of the vacancies upon thermal annealing. In this work, we investigate the localization properties of the electronic states in selected crystalline (GeTe)x-(Sb2Te3)y(More)
Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement(More)
  • 1