Robert K S Wong16
Wangfa Zhao10
16Robert K S Wong
10Wangfa Zhao
6Henri Tiedge
Learn More
BC200 RNA, a small functional RNA that operates as a translational modulator, has been implicated in the regulation of local synaptodendritic protein synthesis in neurons. Cell type-specific expression of BC200 RNA is tightly controlled such that the RNA is not normally detected in somatic cells other than neurons. However, the neuron-specific control of(More)
Rhythmic oscillatory activities at the theta frequency (4-12 Hz) in the hippocampus have long-attracted attention because they have been implicated in diverse brain functions, including spatial cognition. Although studies based on pharmacology and lesion experiments suggested heterogeneity of these rhythms and their behavioral correlates, controversies are(More)
Many neuropsychiatric symptoms of fragile X syndrome (FXS) are believed to be a consequence of altered regulation of protein synthesis at synapses. We discovered that lovastatin, a drug that is widely prescribed for the treatment of high cholesterol, can correct excess hippocampal protein synthesis in the mouse model of FXS and can prevent one of the robust(More)
Regulatory RNAs have been suggested to contribute to the control of gene expression in eukaryotes. Brain cytoplasmic (BC) RNAs are regulatory RNAs that control translation initiation. We now report that neuronal BC1 RNA plays an instrumental role in the protein-synthesis-dependent implementation of neuronal excitation-repression equilibria. BC1 repression(More)
Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha (RPTPalpha) regulates SRC family kinases, potassium channels and(More)
BACKGROUND The will to eat is a decision associated with conditioned responses and with unconditioned body sensations that reflect changes in metabolic biomarkers. Here, we investigate whether this decision can be delayed until blood glucose is allowed to fall to low levels, when presumably feeding behavior is mostly unconditioned. Following such an eating(More)
Application of group I metabotropic glutamate receptor (mGluR) agonists elicits seizure discharges in vivo and prolonged ictal-like activity in in vitro brain slices. In this study we examined 1) if group I mGluRs are activated by synaptically released glutamate during epileptiform discharges induced by convulsants in hippocampal slices and, if so, 2)(More)
BACKGROUND BC RNAs and the fragile X mental retardation protein (FMRP) are translational repressors that have been implicated in the control of local protein synthesis at the synapse. Work with BC1 and Fmr1 animal models has revealed that phenotypical consequences resulting from the absence of either BC1 RNA or FMRP are remarkably similar. To establish(More)
Transient stimulation of group I metabotropic glutamate receptors (mGluRs) induces persistent prolonged epileptiform discharges in hippocampal slices via a protein synthesis-dependent process. At present, the signaling process underlying the induction of these epileptiform discharges remains unknown. We examined the possible role of extracellular(More)
Stimulation of group I metabotropic glutamate receptors (mGluRs) by the agonist (S)-dihydroxyphenylglycine in the hippocampus transforms normal neuronal activity into prolonged epileptiform discharges. The conversion is long lasting in that epileptiform discharges persist after washout of the inducing agonist and serves as a model of epileptogenesis. The(More)