Riccardo Balzan

Learn More
The most versatile method to increase liquid-state (13)C NMR sensitivity is dissolution dynamic nuclear polarization. The use of trityl radicals is usually required to obtain very large (13)C polarization via this technique. We herein demonstrate that up to 35% liquid-state (13)C polarization can be obtained in about 1.5 h using ubiquitous nitroxyl radicals(More)
Pyruvate membrane crossing and its lactate dehydrogenase-mediated conversion to lactate in cells featuring different levels of expression of membrane monocarboxylate transporters (MCT4) were probed by dissolution dynamic nuclear polarization-enhanced NMR. Hyperpolarized 13 C-1-labeled pyruvate was transferred to suspensions of rodent tumor cell carcinoma,(More)
The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the(More)
Hyperpolarization by dissolution dynamic nuclear polarization (DNP) is a versatile technique to dramatically enhance the nuclear magnetic resonance (NMR) signal intensity of insensitive long-T1 nuclear spins such as (6)Li. The (6)Li longitudinal relaxation of lithium ions in aqueous solutions strongly depends on the concentration of paramagnetic species,(More)
Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency(More)
  • 1