Learn More
An important step for cholinergic transmission involves the vesicular storage of acetylcholine (ACh), a process mediated by the vesicular acetylcholine transporter (VAChT). In order to understand the physiological roles of the VAChT, we developed a genetically altered strain of mice with reduced expression of this transporter. Heterozygous and homozygous(More)
Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic(More)
Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased(More)
The vesicular acetylcholine (ACh) transporter (VAChT) mediates ACh storage by synaptic vesicles. However, the VAChT-independent release of ACh is believed to be important during development. Here we generated VAChT knockout mice and tested the physiological relevance of the VAChT-independent release of ACh. Homozygous VAChT knockout mice died shortly after(More)
Mammalian motor nerve terminals contain hundreds of thousands of synaptic vesicles, but only a fraction of these vesicles is immediately available for release, the remainder forming a reserve pool. The supply of vesicles is replenished through endocytosis, and newly formed vesicles are refilled with acetylcholine through a process that depends on the(More)
The Mas protooncogene encodes a G protein-coupled receptor that has been described as a functional receptor for the cardioprotective fragment of the renin-angiotensin system (RAS), Angiotensin (Ang)-(1-7). The aim of this current study was to evaluate the responsiveness of Mas expression in hearts during different physiological and pathological conditions(More)
We investigated the effects of cholesterol removal on spontaneous and KCl-evoked synaptic vesicle recycling at the frog neuromuscular junction. Cholesterol removal by methyl-β-cyclodextrin (MβCD) induced an increase in the frequency of miniature end-plate potentials (MEPPs) and spontaneous destaining of synaptic vesicles labeled with the styryl dye FM1-43.(More)
Schizophrenia is characterized by behavioral symptoms, brain function impairments and electroencephalographic (EEG) changes. Dysregulation of immune responses and oxidative imbalance underpins this mental disorder. The present study aimed to investigate the effects of the typical antipsychotic chlorpromazine (CP) alone or combined with the natural(More)
INTRODUCTION Short-term plasticity of synaptic function is an important physiological control of transmitter release. Short-term plasticity can be regulated by intracellular calcium released by ryanodine and inositol triphosphate (IP3) receptors, but the role of these receptors at the neuromuscular junction is understood incompletely. METHODS We measured(More)