Learn More
Advances in data storage and image acquisition technologies have enabled the creation of large image datasets. In this scenario, it is necessary to develop appropriate information systems to efficiently manage these collections. The commonest approaches use the so-called Content-Based Image Retrieval (CBIR) systems. Basically, these systems try to retrieve(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may(More)
The effectiveness of content-based image retrieval (CBIR) systems can be improved by combining image features or by weighting image similarities, as computed from multiple feature vectors. However, feature combination do not make sense always and the combined similarity function can be more complex than weight-based functions to better satisfy the users'(More)
This paper proposes a new rotation-invariant and scale-invariant representation for texture image retrieval based on steerable pyramid decomposition. By calculating the mean and standard deviation of decomposed image subbands, the texture feature vectors are extracted. To obtain rotation or scale invariance, the feature elements are aligned by considering(More)
This work exploits the resemblance between content-based image retrieval and image analysis with respect to the design of image descriptors and their effectiveness. In this context, two shape descriptors are proposed: contour saliences and segment saliences. Contour saliences revisits its original definition, where the location of concave points was a(More)
Classifying Remote Sensing Images (RSI) is a hard task. There are automatic approaches whose results normally need to be revised. The identification and polygon extraction tasks usually rely on applying classification strategies that exploit visual aspects related to spectral and texture patterns identified in RSI regions. There are a lot of image(More)
Biodiversity Information Systems (BISs) involve all kinds of heterogeneous data, which include ecological and geographical features. However, available information systems offer very limited support for managing these kinds of data in an integrated fashion. Furthermore, such systems do not fully support image content (e.g., photos of landscapes or living(More)
The use of remote sensing images (RSIs) as a source of information in agribusiness applications is very common. In those applications, it is fundamental to identify and understand trends and patterns in space occupation. However, the identification and recognition of crop regions in remote sensing images are not trivial tasks yet. In high resolution image(More)