Learn More
Sirius Red, a strong anionic dye, stains collagen by reacting, via its sulphonic acid groups, with basic groups present in the collagen molecule. The elongated dye molecules are attached to the collagen fibre in such a way that their long axes are parallel. This parallel relationship between dye and collagen results in an enhanced birefringency. Examination(More)
Prions are composed of an isoform of a normal sialoglycoprotein called PrP(c), whose physiological role has been under investigation, with focus on the screening for ligands. Our group described a membrane 66 kDa PrP(c)-binding protein with the aid of antibodies against a peptide deduced by complementary hydropathy. Using these antibodies in western blots(More)
Prions, the etiological agents for infectious degenerative encephalopathies, act by entering the cell and inducing conformational changes in PrPC (a normal cell membrane sialoglycoprotein), which result in cell death. A specific cell-surface receptor to mediate PrPC and prion endocytosis has been predicted. Complementary hydropathy let us generate a(More)
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of(More)
The functional role of pericytes in cancer progression remains unknown. Clinical studies suggest that low numbers of vessel-associated pericytes correlated with a drop in overall survival of patients with invasive breast cancer. Using genetic mouse models or pharmacological inhibitors, pericyte depletion suppressed tumor growth but enhanced metastasis.(More)
Theoretical considerations predict that amplification of expressed gene transcripts by reverse transcription-PCR using arbitrarily chosen primers will result in the preferential amplification of the central portion of the transcript. Systematic, high-throughput sequencing of such products would result in an expressed sequence tag (EST) database consisting(More)
Laminin (LN) plays a major role in neuronal differentiation, migration and survival. Here, we show that the cellular prion protein (PrPc) is a saturable, specific, high-affinity receptor for LN. The PrPc-LN interaction is involved in the neuritogenesis induced by NGF plus LN in the PC-12 cell line and the binding site resides in a carboxy-terminal(More)
Understanding the physiological function of the cellular prion (PrPc) depends on the investigation of PrPc-interacting proteins. Stress-inducible protein 1 (STI1) is a specific PrPc ligand that promotes neuroprotection of retinal neurons through cAMP-dependent protein kinase A (PKA). Here, we examined the signaling pathways and functional consequences of(More)
BACKGROUND Mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) is the most common surgically remediable epileptic syndrome. Ablation of the cellular prion protein (PrP(c)) gene (PRNP) enhances neuronal excitability of the hippocampus in vitro and sensitivity to seizure in vivo, indicating that PrP(c) might be related to epilepsy. (More)
Prions, the etiological agents for infectious degenerative encephalopathies, act by inducing structural modifications in the cellular prion protein (PrPc). Recently, we demonstrated that PrPc binds laminin (LN) and that this interaction is important for the neuritogenesis of cultured hippocampal neurons. Here we have used the PC-12 cell model to explore the(More)