Learn More
The accurate detection and classification of moving objects is a critical aspect of advanced driver assistance systems. We believe that by including the object classification from multiple sensor detections as a key component of the object's representation and the perception process, we can improve the perceived model of the environment. First, we define a(More)
In this paper, we detail a complete software architecture of a key task that an intelligent vehicle has to deal with: frontal object perception. This task is solved by processing raw data of a radar and a mono-camera to detect and track moving objects. Data sets obtained from highways, country roads and urban areas were used to test the proposed method.(More)
Perceiving the environment is a fundamental task for Advance Driver Assistant Systems. While simultaneous localization and mapping represents the static part of the environment, detection and tracking of moving objects aims at identifying the dynamic part. Knowing the class of the moving objects surrounding the vehicle is a very useful information to(More)
Intelligent vehicle perception involves the correct detection and tracking of moving objects. Taking into account all the possible information at early levels of the perception task can improve the final model of the environment. In this paper, we present an evidential fusion framework to represent and combine evidence from multiple lists of sensor(More)
We propose a novel method to reorder the list of images returned by an image retrieval system (IRS). The method combines the original order obtained by an IRS, the similarity between images obtained with textual features and a relevance feedback approach, all of them with the purpose of separating relevant from irrelevant images, and thus, obtaining a more(More)
Recent evaluation results from Geographic Information Retrieval (GIR) indicate that current information retrieval methods are effective to retrieve relevant documents for geographic queries, but they have severe difficulties to generate a pertinent ranking of them. Motivated by these results in this paper we propose a novel method to reorder the list of(More)
Considering perception as an observation process only is the very reason for which robotic perception methods are to date unable to provide a general capacity of scene understanding. Related work in neuroscience has shown that there is a strong relationship between perception and action. We believe that considering perception in relation to action requires(More)
  • 1