Learn More
1α,25-dihydroxyvitamin D3 [1,25D] is recognized as a steroid hormone that rapidly elicits intracellular signals in various tissues. In skeletal myoblasts, we have previously demonstrated that one of the 1,25D-induced non-genomic effects is the upstream stimulation of MAPKs through Src activation. In this work, the data obtained suggest that the classical(More)
Changes in morphology and DNA synthesis in cultured myoblasts in response to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] have previously suggested that the vitamin D hormone may affect muscle cell proliferation and differentiation. However, this interpretation was not substantiated by measurement of specific biochemical markers of myogenesis. To study the(More)
The steroid hormone 1alpha,25-dihydroxyvitamin D(3) (1, 25-(OH)(2)D(3)) rapidly modulates Ca(2+) homeostasis in avian skeletal muscle cells by driving a complex signal transduction mechanism, which promotes Ca(2+) release from inner stores and cation influx from the outside through both L-type and store-operated Ca(2+) (SOC) channels. In the present work,(More)
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], the hormonally active form of Vitamin D(3), has been shown to be a potent negative growth regulator of breast cancer cells both in vitro and in vivo. 1alpha,25(OH)(2)D(3) acts through two different mechanisms. In addition to regulating gene transcription via its specific intracellular receptor (Vitamin(More)
The purpose of this article is to review the activation of signal transduction pathways in skeletal muscle cells by the hormone 1α,25(OH)(2)-vitamin D(3) [1α,25(OH)(2)D(3)], focusing on the role of the vitamin D receptor (VDR). The hormone induces fast, non transcriptional responses, involving stimulation of the transmembrane second messenger systems(More)
In recent years, vitamin D has been received increased attention due to the resurgence of vitamin D deficiency and rickets in developed countries and the identification of extraskeletal effects of vitamin D, suggesting unexpected benefits of vitamin D in health and disease, beyond bone health. The possibility of extraskeletal effects of vitamin D was first(More)
Recent studies have provided evidence for nuclear estrogen receptor-mediated calcium transport in intestinal mucosal cells. The possibility that, in addition, estrogens directly stimulate intestinal Ca2+ fluxes through second-messenger pathways was investigated. Exposure of enterocytes isolated from female rat duodenum to low physiological levels of 17(More)
We previously reported that 1alpha,25(OH)2D3 induces non-transcriptional rapid responses through activation of MAPKs in C2C12 skeletal muscle cells. However, there is little information on the molecular mechanism underlying the initiation of 1alpha,25(OH)2D3 signaling through this pathway. Plasma membrane components have been involved in some non-genomic(More)