Ricardo L. Actis

Learn More
The primary objective of conservative care for the diabetic foot is to protect the foot from excessive pressures. Pressure reduction and redistribution may be achieved by designing and fabricating orthotic devices based on foot structure, tissue mechanics, and external loads on the diabetic foot. The purpose of this paper is to describe the process used for(More)
A method is developed and validated for approximating continuous smooth distributions of finite strains in the ventricles from the deformations of magnetic resonance imaging (MRI) tissue tagging "tag lines" or "tag surfaces." Tag lines and intersections of orthogonal tag lines are determined using a semiautomated algorithm. Three-dimensional (3-D)(More)
There is evidence that appropriate footwear is an important factor in the prevention of foot pain in otherwise healthy people or foot ulcers in people with diabetes and peripheral neuropathy. A standard care for reducing forefoot plantar pressure is the utilization of orthotic devices such as total contact inserts (TCI) with therapeutic footwear. Most(More)
A new experimental method for the evaluation of myocardial constitutive models combines magnetic resonance (MR) radiofrequency (RF) tissue-tagging techniques with iterative two-dimensional (2-D) nonlinear finite element (FE) analysis. For demonstration, a nonlinear isotropic constitutive model for passive diastolic expansion in the in vivo canine heart is(More)
Passive myocardial material properties have been measured previously by subjecting test samples of myocardium to in vitro load-deformation analysis or, in the intact heart, by pressure-volume relationships. A new method for determining passive material properties, described in this paper, couples a p-version finite element model of the heart, a nonlinear(More)
BACKGROUND Magnetic resonance imaging tissue tagging is a relatively recent methodology that describes ventricular systolic function in terms of intramyocardial ventricular deformation. Because the analysis involves the use of many intramyocardial points to describe systolic deformation, it is theoretically more sensitive at describing subtle differences in(More)
Prediction and measurement of residuum shape change inside the prosthesis under various loading conditions is important for prosthesis design and evaluation. Residual limb surface measurements with the prosthesis in situ were used for construction of a finite element model (FEM). These surface measurements were obtained from volumetric computed tomography.(More)
OBJECTIVES To determine nonlinear material properties of passive, diastolic myocardium using magnetic resonance imaging (MRI) tissue-tagging, finite element analysis (FEA) and nonlinear optimization. BACKGROUND Alterations in the diastolic material properties of myocardium may pre-date the onset of or exist exclusive of systolic ventricular dysfunction in(More)
The effects of direct ventricular interaction and interaction mediated by the pericardium on the diastolic left ventricle (LV) were quantified using idealized models of five pathologic conditions. Two-dimensional (2D) mathematical models were constructed in long and short axis views of four pathologic LV conditions and the normal heart (NL): dilated(More)