Ricardo J. Rodriguez

Learn More
The microsurgical anatomy of the superficial cortical veins was examined in 20 cerebral hemispheres. The superficial cortical veins are divided into three groups based on whether they drain the lateral, medial, or inferior surface of the hemisphere. The veins on the three surfaces are further subdivided on the basis of the lobe and cortical area that they(More)
1. We iontophoretically applied NG-nitro-L-arginine (L-NOArg), an inhibitor of nitric oxide synthase (NOS), to cells (n = 77) in area 17 of anaesthetized and paralysed cats while recording single-unit activity extracellularly. In twenty-nine out of seventy-seven cells (38%), compounds altering NO levels affected visual responses. 2. In twenty-five out of(More)
We have shown that application of an inhibitor of the enzyme nitric oxide synthase (NOS) effectively suppresses the visual responses of relay cells in the dorsal lateral geniculate nucleus (dLGN) of the anaesthetized paralysed cat. Such suppression seems to result from a specific reduction in transmission via N-methyl-D-aspartic acid (NMDA) receptors, since(More)
The microsurgical anatomy of the deep venous system of the brain was examined in 20 cerebral hemispheres. The deep venous system is composed of the internal cerebral, basal, and great veins and their tributaries. This system drains the deep white and gray matter surrounding the lateral and 3rd ventricles and the basal cisterns. The deep veins are divided(More)
1. Using an in vivo preparation we have examined the actions of two inhibitors of nitric oxide synthase (NOS), NG-nitro-L-arginine (L-NOArg) and NG-methyl-L-arginine (L-MeArg), in the feline dorsal lateral geniculate nucleus (dLGN). We compared the responses obtained to iontophoretic application of these substances during visual stimulation with those(More)
In the absence of a direct geniculate input, area 17 cells in the cat are nevertheless able to respond to visual stimuli because of feedback connections from area 18. Anatomic studies have shown that, in the cat visual cortex, layer 5 of area 18 projects to layer 5 of area 17, and layers 2/3 of area 18 project to layers 2/3 of area 17. What is the specific(More)
We have examined the responses of a population of 77 cells in the dorsal lateral geniculate nucleus (dLGN) of the anaesthetized, paralysed cat. Here the synthetic enzyme for the production of nitric oxide, nitric oxide synthase, is found only in the presynaptic terminals of the cholinergic input from the brainstem. In our hands, iontophoretic application of(More)
We have tested the effect of iontophoretic application of the nitric oxide synthase inhibitor L-nitroarginine on the activity of a population of 53 perigeniculate (PGN) cells, recorded extracellularly in the anaesthetized paralysed cat. In all cells tested with visual stimulation during L-nitroarginine application (n = 15), the visually elicited responses(More)
The effect of electrical stimulation of the denervated posterior cricoarytenoid (PCA) muscle on its subsequent reinnervation was explored in the canine. Eight animals were implanted with a planar array of 36 electrodes for chronic stimulation and recording of spontaneous and evoked electromyographic (EMG) potentials across the entire fan-shaped surface of a(More)
Iontophoretic application of L-arginine (L-Arg) resulted in a profound decrease in visually elicited and spontaneous activity in 22 of 77 (29%) cells in area 17 of the anaesthetized/paralysed cat. Duration was long, and cells did not recover pre-application activity levels, indicating permanent decline. This effect was obtained without change in the(More)