Learn More
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe(More)
Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In(More)
Single Nucleotide Polymorphisms are invaluable markers for tracing the genetic basis of inheritable traits and the ability to create marker libraries quickly is vital for timely identification of target genes. Next-generation sequencing makes it possible to sample a genome rapidly, but polymorphism detection relies on having a reference genome to which(More)
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA-Seq) of bulked pools to identify(More)
UNLABELLED The design of genetic markers is of particular relevance in crop breeding programs. Despite many economically important crops being polyploid organisms, the current primer design tools are tailored for diploid species. Bread wheat, for instance, is a hexaploid comprising of three related genomes and the performance of genetic markers is(More)
Emerging and re-emerging pathogens imperil public health and global food security. Responding to these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp.(More)
The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC). Unlike other sequencing centers that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is(More)
Targeted Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR(More)
The clinical, laboratory and EEG findings of 4 uremic patients on hemodialysis who accidently developed acute hypercalcemia were reviewed. An acute central nervous system syndrome developed, associated with the clinical changes of disorientation, dysarthria, seizures, myoclonic jerks, hallucinations, irritability, confusion, memory and judgment defects plus(More)
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although(More)