Riaan Conradie

Learn More
Numerous top-down kinetic models have been constructed to describe the cell cycle. These models have typically been constructed, validated and analyzed using model species (molecular intermediates and proteins) and phenotypic observations, and therefore do not focus on the individual model processes (reaction steps). We have developed a method to: (a)(More)
Systems Biology is the science that aims to understand how biological function absent from macromolecules in isolation, arises when they are components of their system. Dedicated to the memory of Reinhart Heinrich, this paper discusses the origin and evolution of the new part of systems biology that relates to metabolic and signal-transduction pathways and(More)
Metabolic control analysis (MCA) was developed to quantify how system variables are affected by parameter variations in a system. In addition, MCA can express the global properties of a system in terms of the individual catalytic steps, using connectivity and summation theorems to link the control coefficients to the elasticity coefficients. MCA was(More)
Since the 1970s, with Heinrich as a pioneer in the field, numerous kinetic models of erythrocyte glycolysis have been constructed. A functional comparison of eight of these models indicates that the production of ATP and GSH in the red blood cell is largely controlled by the demand reactions. The rate characteristics for the supply and demand blocks(More)
Systems Biology requires a tight integration of experimental data and detailed computer models to obtain a quantitative understanding of the system under study. To facilitate this integration a standardization of data and model representation and storage is important. We illustrate here such an integration using JWS Online, the modeling tool developed in(More)
In this contribution we report on the JWS Online project and the progress that has been made since the first ESCEC meeting. Whilst maintaining the same user interface, we have completely redesigned the server part of JWS Online, now a) using webMathematica as the interface between the HTML pages and the Mathematica [1] Kernel and b) storing all models as(More)
During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1,(More)
The metabolism of progesterone (PROG) by cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) results in the formation of both 17α-hydroxyprogesterone (17-OHPROG) and 16α-hydroxyprogesterone (16-OHPROG) in humans. Unlike 17-OHPROG, 16-OHPROG is not metabolised further in steroidogenic tissue. While this metabolite can be readily detected in serum and(More)
  • 1