Rhonda Bangham

Learn More
The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of(More)
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces(More)
To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and(More)
Although approximately 10,000 antibodies are available from commercial sources, antibody reagents are still unavailable for most proteins. Furthermore, new applications such as antibody arrays and monoclonal antibody therapeutics have increased the demand for more specific antibodies to reduce cross-reactivity and side effects. An array containing every(More)
Abstract Identifying biologically relevant substrates for protein kinases is a critical step in understanding the function of these clinically important enzymes. Traditional approaches for kinase substrate identification are expensive, slow, and lack sensitivity. For this reason, many kinase activity assays employ generic substrates or peptides that(More)
Antibody cross-reactivity can compromise interpretation of experiments and derail therapeutic antibody development. Standard techniques such as immunohistochemistry or Western analysis provide important but often inadequate approaches to assess antibody specificity. Protein microarrays are providing a new approach to rapidly characterize antibody(More)
The increased use of antibodies as therapeutics, as well as the growing demand for large numbers of antibodies for high-throughput protein analyses, has been accompanied by a need for more specific antibodies. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity since it allows the(More)
  • 1