Rheem D. Medh

Learn More
Glucocorticoids (GCs) induce apoptosis in lymphoid cells that contain functional GC receptors (GRs). However, GC resistance often is seen in cells with demonstrable GRs; one such line is CEM-C1. We have tested the hypothesis that positive interactions between GC and cyclic AMP (cAMP) regulate GC actions in CEM clones. Treatment of both GC-resistant CEM-C1(More)
Three closely related clones of leukemic lymphoid CEM cells were compared for their gene expression responses to the glucocorticoid dexamethasone (Dex). All three contained receptors for Dex, but only two responded by undergoing apoptosis. After a time of exposure to Dex that ended late in the interval preceding onset of apoptosis, gene microarray analyses(More)
Although the immunosuppressive drugs FK506, rapamycin and cyclosporin A have been reported to potentiate transcriptional activation mediated by a non-saturating concentration of the glucocorticoid receptor agonist dexamethasone, the precise mechanism(s) underlying these responses remains unclear. The murine L-929-derived LMCAT cell line stably transfected(More)
Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited(More)
Sensitivity to glucocorticoid (GC)-evoked apoptosis in lymphoid cell lines correlates closely with GC-mediated suppression of c-Myc expression. To establish a functional role for c-Myc in GC-mediated apoptosis, we have stably expressed MycER(TM), the human c-Myc protein fused to the modified ligand-binding domain of the murine estrogen receptor alpha, in(More)
The suitability of mouse as an animal model for studying the glutathione S-transferase (GST)-mediated detoxification mechanisms has been studied by analyzing the expression of the alpha, mu, and pi classes of glutathione S-transferase isoenzymes in mouse brain, heart, kidney, spleen, liver, and muscle. Individual isoenzymes from each of these tissues have(More)
We report the development of a melphalan-resistant HS-Sultan human plasma cell line. The melphalan-resistant [MEL(R)] cell line was 16.7-fold more resistant to melphalan in vitro than the parent cell line [MEL(S)]. The wild type and MEL(R) HS-Sultan cell lines formed localized plasmacytomas when injected into nude mice. A dose-response effect of melphalan(More)
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues(More)
Suppression of c-myc has been implicated as a critical event in some glucocorticoid-evoked apoptotic systems. It is therefore of interest to understand the mechanism of glucocorticoid-regulation of the c-myc gene. In the present study, a detailed analysis of dexamethasone (Dex)-evoked regulation of the human c-myc gene in human leukemic CEM-C7 cells has(More)
S-(2,4-dinitrophenyl)glutathione (Dnp-SG) ATPase of human erythrocytes has been purified to apparent homogeneity by affinity chromatography. In reduced denaturing gels, the subunit Mr value of Dnp-SG ATPase was found to be 38,000. Dinitrophenyl glutathione (Dnp-SG) stimulated the hydrolysis of ATP by the purified enzyme whereas oxidized glutathione (GSSG)(More)