Rhea T. Utley

Learn More
Although histone acetylation has historically been linked to transcription activation, recent studies indicate that this modification and the enzymes that catalyze it have much broader and diverse functions. Histone acetyltransferase complexes are involved in such diverse processes as transcription activation, gene silencing, DNA repair and cell-cycle(More)
Post-translational acetylation of histone H4 N-terminal tail in chromatin has been associated with several nuclear processes including transcription. We report the purification and characterization of a native multisubunit complex (NuA4) from yeast that acetylates nucleosomal histone H4. NuA4 has an apparent molecular mass of 1.3 MDa. All four conserved(More)
Dot1 (Disruptor of telomeric silencing-1) is a histone H3 lysine 79 methyltransferase that contributes to the establishment of heterochromatin boundary and has been linked to transcription elongation. We found that histone H4 N-terminal domain, unlike other histone tails, interacts with Dot1 and is essential for H3 K79 methylation. Furthermore, we show that(More)
Yeast disruptor of telomeric silencing-1 (DOT1) is involved in gene silencing and in the pachytene checkpoint during meiotic cell cycle. Here we show that the Dot1 protein possesses intrinsic histone methyltransferase (HMT) activity. When compared with Rmt1, another putative yeast HMT, Dot1 shows very distinct substrate specificity. While Rmt1 methylates(More)
Transcriptional co-activators were originally identified as proteins that act as intermediaries between upstream activators and the basal transcription machinery. The discovery that co-activators such as Tetrahymena and yeast Gcn5, as well as human p300/CBP, pCAF, Src-1, ACTR and TAFII250, can acetylate histones suggests that activators may be involved in(More)
Drosophila Enhancer of Polycomb, E(Pc), is a suppressor of position-effect variegation and an enhancer of both Polycomb and trithorax mutations. A homologous yeast protein, Epl1, is a subunit of the NuA4 histone acetyltransferase complex. Epl1 depletion causes cells to accumulate in G2/M and global loss of acetylated histones H4 and H2A. In relation to the(More)
Yaf9, Taf14, and Sas5 comprise the YEATS domain family in Saccharomyces cerevisiae, which in humans includes proteins involved in acute leukemias. The YEATS domain family is essential, as a yaf9Delta taf14Delta sas5Delta triple mutant is nonviable. We verify that Yaf9 is a stable component of NuA4, an essential histone H4 acetyltransferase complex. Yaf9 is(More)
In Drosophila, the MSL complex is required for the dosage compensation of X-linked genes in males and contains a histone acetyltransferase, MOF. A point mutation in the MOF acetyl-CoA-binding site results in male-specific lethality. Yeast Esa1p, a MOF homolog, is essential for cell cycle progression and is the catalytic subunit of the NuA4 acetyltransferase(More)
Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent(More)
To investigate the potential mechanisms by which the SWI/SNF complex differentially regulates different genes we have tested whether transcription factors with diverse DNA binding domains were able to exploit nucleosome disruption by SWI/SNF. In addition to GAL4-VP16, the SWI/SNF complex stimulated nucleosome binding by the Zn2+ fingers of Sp1, the basic(More)