Rezarta Islamaj Doğan

Learn More
MOTIVATION Despite the central role of diseases in biomedical research, there have been much fewer attempts to automatically determine which diseases are mentioned in a text-the task of disease name normalization (DNorm)-compared with other normalization tasks in biomedical text mining research. METHODS In this article we introduce the first machine(More)
A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information(More)
BACKGROUND Patient records contain valuable information regarding explanation of diagnosis, progression of disease, prescription and/or effectiveness of treatment, and more. Automatic recognition of clinically important concepts and the identification of relationships between those concepts in patient records are preliminary steps for many important(More)
BioC is a new format and associated code libraries for sharing text and annotations. We have implemented BioC natural language preprocessing pipelines in two popular programming languages: C++ and Java. The current implementations interface with the well-known MedPost and Stanford natural language processing tool sets. The pipeline functionality includes(More)
BioC is a recently created XML format to share text data and annotations, and an accompanying input/output library to promote interoperability of data and tools for natural language processing of biomedical text. This article reports the use of BioC to address a common challenge in processing biomedical text information-that of frequent entity name(More)
MOTIVATION Recognizing words that are key to a document is important for ranking relevant scientific documents. Traditionally, important words in a document are either nominated subjectively by authors and indexers or selected objectively by some statistical measures. As an alternative, we propose to use documents' words popularity in user queries to(More)
As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language(More)
BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the(More)
This paper reports the use of BioC to address a common challenge in processing biomedical text information—that of frequent biomedical entity name abbreviation. We selected three different abbreviation definition identification modules, and used the publically available BioC code to convert these independent modules into BioC-compatible components that(More)
BioC is a new simple XML format for sharing biomedical text and annotations and libraries to read and write that format. This promotes the development of interoperable tools for natural language processing (NLP) of biomedical text. The interoperability track at the BioCreative IV workshop featured contributions using or highlighting the BioC format. These(More)