Reza Razzaghi

Learn More
—This paper presents a new method based on the electromagnetic time-reversal (EMTR) theory for locating faults in power networks. The applicability of the EMTR technique to locate faults is first discussed. Using the classical transmission-line equations in the frequency domain, analytical expressions are derived to infer the location of the fault. The(More)
This paper presents an FPGA-based (field-programmable gate array) real-time digital simulator for power systems and power electronics applications. The proposed approach integrates the Modified Nodal Analysis (MNA) method, the Fixed Admittance Matrix Nodal Method (FAMNM) and multi-conductor transmission line modeling capabilities. In particular, the MNA is(More)
— The paper focuses on the extension to series-compensated multiconductor transmission lines of a new fault location method based on the Electromagnetic Time Reversal (EMTR) theory. The applicability of the EMTR theory to locate faults is first summarized. Then, the paper describes the proposed algorithm to locate faults in multiconductor transmission lines(More)
The paper presents a new method based on the Electromagnetic Time-Reversal (EMTR) for locating faults in power systems. The applicability of the EMTR to electromagnetic transients associated with traveling waves in transmission lines originated by the fault is theoretically demonstrated. A new fault location technique is then proposed and illustrated for a(More)
– This paper presents the hardware-in-the-loop (HIL) validation of a proposed FPGA-based real-time simulator for power electronics applications. The proposed FPGA-based real-time simulation platform integrates the Modified Nodal Analysis (MNA) method, Fixed Admittance Matrix Nodal Method (FAMNM) and an optimization technique to assess the optimal value of(More)
— This paper aims at proving the application of the fault location method based on the Electromagnetic Time Reversal (EMTR) to multi-terminal HVDC (MTDC) networks. In particular, the paper integrates the EMTR fault location technique with the protection scheme recently proposed within the EU project TWENTIES. Further, in view of the peculiarity of the fast(More)
—Installation of small generators in distribution networks has been increased recently due to its various benefits. One of the important issues related to these distributed generators is the effect of system faults on their transient stability. Due to the low inertia constant of the small-scale generators and the slow operation of the distribution networks'(More)
– The paper proposes a novel method for the optimal parameter selection of the discrete-time switch model used in circuit solvers that adopt the Fixed Admittance Matrix Nodal Method (FAMNM) approach. As known, FAMNM-based circuit solvers allow to reach efficient computation times since they do not need the inversion of the circuit nodal admittance matrix.(More)
  • 1