Reza Arsanjani

Learn More
PURPOSE To achieve whole-heart coronary magnetic resonance angiography (MRA) with (1.0 mm)(3) spatial resolution and 5 min of free-breathing scan time. METHODS We used an electrocardiograph-gated, T2-prepared and fat-saturated balanced steady state free precession sequence with 3DPR trajectory for free-breathing data acquisition with 100% gating(More)
In this work we automatically segment the left ventricle (LV) in cardiac MR images in the end-diastole (ED) and end-systole (ES) phases using a novel approach that combines statistical and deterministic deformable models. A 3D Active Appearance Model (AAM) is used to segment the ED phase. The AAM texture model is trained on radial samples from gradient(More)
Peptide toxins are invaluable tools for studying the structure and physiology of ion channels. Pseudechetoxin (PsTx) is the first known peptide toxin that targets cyclic nucleotide-gated (CNG) ion channels, which play a critical role in sensory transduction in the visual and olfactory systems. PsTx inhibited channel currents at low nM concentrations when(More)
PURPOSE Subendocardial dark-rim artifacts (DRAs) remain a major concern in first-pass perfusion (FPP) myocardial MRI and may lower the diagnostic accuracy for detection of ischemia. A major source of DRAs is the "Gibbs ringing" effect. We propose an optimized radial acquisition strategy aimed at eliminating ringing-induced DRAs in FPP. THEORY AND METHODS(More)
PURPOSE To develop a cardiac and respiratory self-gated four-dimensional (4D) coronary MRA technique for simultaneous cardiac anatomy and function visualization. METHODS A contrast-enhanced, ungated spoiled gradient echo sequence with self-gating (SG) and 3DPR trajectory was used for image acquisition. Data were retrospectively binned into different(More)
PURPOSE Establishing a high-resolution non-ECG-gated first-pass perfusion (FPP) cardiac MRI technique may improve accessibility and diagnostic capability of FPP imaging. We propose a non-ECG-gated FPP imaging technique using continuous magnetization-driven golden-angle radial acquisition. The main purpose of this preliminary study is to evaluate whether, in(More)