Revathi Govind

Learn More
D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient(More)
Nosocomial infections are increasingly being recognised as a major patient safety issue. The modern hospital environment and associated health care practices have provided a niche for the rapid evolution of microbial pathogens that are well adapted to surviving and proliferating in this setting, after which they can infect susceptible patients. This is(More)
The pathogenesis of Clostridium difficile, the major cause of antibiotic-associated diarrhea, is mainly associated with the production and activities of two major toxins. In many bacteria, toxins are released into the extracellular environment via the general secretion pathways. C. difficile toxins A and B have no export signature and their secretion is not(More)
Clostridium difficile produces two toxins, A and B, which act together to cause pseudomembraneous colitis. The genes encoding these toxins, tcdA and tcdB, are part of the pathogenicity locus, which also includes tcdC, a putative negative regulator of the toxin genes. In this study, we demonstrate that TcdC is a membrane-associated protein in C. difficile.
Clostridium difficile is an important nosocomial pathogen and the leading cause of hospital-acquired diarrhea. Antibiotic use is the primary risk factor for the development of C. difficile-associated disease because it disrupts normally protective gut flora and enables C. difficile to colonize the colon. C. difficile damages host tissue by secreting toxins(More)
Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene,(More)
  • 1