#### Filter Results:

- Full text PDF available (25)

#### Publication Year

2005

2014

- This year (0)
- Last 5 years (6)
- Last 10 years (24)

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Martin Marciniszyn, Reto Spöhel, Angelika Steger
- APPROX-RANDOM
- 2005

Consider the following one player game on an empty graph with n vertices. The edges are presented one by one to the player in a random order. One of two colors, red or blue, has to be assigned to each edge immediately. The player's object is to color as many edges as possible without creating a monochromatic clique K of some fixed size. We prove a threshold… (More)

- Michael Belfrage, Torsten Mütze, Reto Spöhel
- SIAM J. Discrete Math.
- 2012

Consider the following probabilistic one-player game: The board is a graph with n vertices, which initially contains no edges. In each step, a new edge is drawn uniformly at random from all non-edges and is presented to the player, henceforth called Painter. Painter must assign one of r available colors to each edge immediately, where r ≥ 2 is a fixed… (More)

- Benjamin Doerr, Reto Spöhel, Henning Thomas, Carola Doerr
- CTW
- 2012

We analyze the general version of the classic guessing game Mastermind with <i>n</i> positions and <i>k</i> colors. Since the case <i>k</i> ≤ <i>n</i><sup>1 − ϵ</sup>, ϵ > 0 a constant, is well understood, we concentrate on larger numbers of colors. For the most prominent case <i>k</i> = <i>n</i>, our results imply that… (More)

- Martin Marciniszyn, Reto Spöhel, Angelika Steger
- Combinatorics, Probability & Computing
- 2009

Consider the following one-player game on a graph with n vertices. The edges are presented one by one to the player in a random order. One of r available colors has to be assigned to each edge immediately. The player's objective is to color as many edges as possible without creating a monochromatic copy of some fixed graph F. We prove a lower bound of n… (More)

- Martin Marciniszyn, Reto Spöhel, Angelika Steger
- Combinatorics, Probability & Computing
- 2009

Consider the following one-player game on a graph with n vertices. The edges are presented one by one to the player in a random order. One of two colors, red or blue, has to be assigned to each edge immediately. The player's objective is to color as many edges as possible without creating a monochromatic copy of some fixed graph F. We prove an upper bound… (More)

- Torsten Mütze, Reto Spöhel, Henning Thomas
- J. Comb. Theory, Ser. B
- 2011

The standard paradigm for online power of two choices problems in random graphs is the Achlioptas process. Here we consider the following natural generalization: Starting with G 0 as the empty graph on n vertices, in every step a set of r edges is drawn uniformly at random from all edges that have not been drawn in previous steps. From these, one edge has… (More)

- Anupam Prakash, Reto Spöhel, Henning Thomas
- Electr. J. Comb.
- 2009

Consider the following one-player game. Starting with the empty graph on n vertices, in every step r new edges are drawn uniformly at random and inserted into the current graph. These edges have to be colored immediately with r available colors, subject to the restriction that each color is used for exactly one of these edges. The player's goal is to avoid… (More)

- Martin Marciniszyn, Reto Spöhel
- SODA
- 2007

Consider the following generalized notion of graph colorings: a vertex coloring of graph <i>G</i> is <i>valid w.r.t. some fixed nonempty graph F</i> if no color class induces a copy of <i>F</i> in <i>G</i>, i.e., there is no monochromatic copy of <i>F</i> in <i>G</i>. We propose and analyze an algorithm for computing valid colorings of a random graph… (More)

- Michael Krivelevich, Reto Spöhel, Angelika Steger
- Random Struct. Algorithms
- 2010

In this paper, we compare the offline versions of three Ramsey-type one-player games that have been studied in an online setting in previous work: the online Ramsey game, the balanced online Ramsey game, and the Achlioptas game. The goal in all games is to color the edges of the random graph ,, according to certain rules without creating a monochromatic… (More)

- Martin Marciniszyn, Jozef Skokan, Reto Spöhel, Angelika Steger
- Random Struct. Algorithms
- 2009

Consider the following problem: For given graphs G and F1,. .. , F k , find a coloring of the edges of G with k colors such that G does not contain Fi in color i. Rödl and Ruci´nski studied this problem for the random graph Gn,p in the symmetric case when k is fixed and F1 = · · · = F k = F. They proved that such a coloring exists asymptotically almost… (More)