Learn More
We wish to thank the anonymous referee whose comments helped us in improving the contents and readibility of our paper. 16 dominating singularity t = r of d(t). By a well-known result (see Bender 1], Theorem 2), it follows that d nnk p k (r))t n ]d(t): Since we already know the asymptotic value of t n ]d(t), we o n l y h a ve to compute p k (r) f o r every(More)
The aim of the present paper is to show how the Lagrange Inversion Formula (LIF) can be applied in a straightforward way i) to find the generating function of many combinatorial sequences, ii) to extract the coefficients of a formal power series, iii) to compute combinatorial sums, and iv) to perform the inversion of combinatorial identities. Particular(More)
The inversion of combinatorial sums is a fundamental problem in algebraic combinatorics. Some combinatorial sums, such as a n = P k d n;k b k , can not be inverted in terms of the orthogonality relation because the innnite, lower triangular array P = fd n;k g's diagonal elements are equal to zero (except d 0;0). Despite this, we can nd a left-inverse P such(More)
This paper presents a data mining methodology to analyze the careers of University graduated students. We present different approaches based on clustering and sequential patterns techniques in order to identify strategies for improving the performance of students and the scheduling of exams. We introduce an ideal career as the career of an ideal student(More)
A refinement of hashing which allows retrieval of an item in a static table with a single probe is considered. Given a set I of identifiers, two methods are presented for building, in a mechanical way, perfect hashing functions, i.e. functions transforming the elements of I into unique addresses. The first method, the “quotient reduction”(More)