Renshi Sawada

Learn More
The authors propose a new sensor structure for an integrated laser Doppler blood flowmeter that consists of two silicon cavities with a PD and laser diode inside each cavity. A silicon lid formed with a converging microlens completes the package. This structure, which was achieved using micromachining techniques, features reduced optical power loss in the(More)
Here, we report the development of an integrated laser Doppler blood flow micrometer for chickens. This sensor weighs only 18 g and is one of the smallest-sized blood flow meters, with no wired line, these are features necessary for attaching the sensor to the chicken. The structure of the sensor chip consists of two silicon cavities with a photo diode and(More)
Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a(More)
SUMMARY This paper focuses on optical integration technology and its application in optical microsensors used in biomedical fields. The integration is based on the hybrid integration approach, achieving high performance , small size and weight, and lower cost. First, we describe the key technologies used in hybrid integration, namely passive alignment(More)
  • 1