Renren Wen

Learn More
During thymic T cell development, CD4 + CD8 + double-positive (DP) thymocytes that express functional TCR are subjected to positive or negative selection and mature into CD4 or CD8 single-positive (SP) thymocytes (Starr et al., 2003). Thymic selection also leads to the development of FoxP3 + T regulatory (T reg) cells, which play a critical role in(More)
We have recently shown that recognition of the mouse mammary tumor virus 9-associated superantigen (vSAG-9) by murine V beta 17+ T cells is strongly influenced by the major histocompatibility complex (MHC) class II haplotype of the presenting cells, resulting in a form of MHC-restricted recognition. This finding was unexpected, because T cell recognition of(More)
OBJECTIVE Elucidating molecular mechanisms underlying limbic epileptogenesis may reveal novel targets for preventive therapy. Studies of TrkB mutant mice led us to hypothesize that signaling through a specific phospholipase (PLC), PLCγ1, promoted development of kindling. METHODS To test this hypothesis, we examined the development of kindling in PLCγ1(More)
Mice and rats lacking the guanosine nucleotide-binding protein Gimap5 exhibit peripheral T cell lymphopenia, and Gimap5 can bind to Bcl-2. We show that Gimap5-deficient mice showed progressive multilineage failure of bone marrow and hematopoiesis. Compared with wild-type counterparts, Gimap5-deficient mice contained more hematopoietic stem cells (HSCs) but(More)
Recent studies have shown that only a subset of major histocompatibility complex (MHC) class II molecules are able to present bacterial superantigens to T cells, leading to the suggestion that class-II associated peptides may influence superantigen presentation. Here, we have assessed the potential role of peptides on superantigen presentation by (a)(More)
Receptor-mediated platelet activation requires phospholipase C (PLC) activity to elevate intracellular calcium and induce actin cytoskeleton reorganization. PLCs are classified into structurally distinct β, γ, δ, ε, ζ, and η isoforms. There are two PLCγ isoforms (PLCγ1, PLCγ2), which are critical for activation by tyrosine kinase-dependent receptors.(More)
  • 1