Learn More
Titanium dioxide nanoparticles (TiO(2) NPs) are now in daily use including popular sunscreens, toothpastes, and cosmetics. However, the effects of TiO(2) NPs on human body, especially on the central nervous system, are still unclear. The aim of this study was to determine whether TiO(2) NPs exposure results in persistent alternations in nervous system(More)
Exposure to titanium dioxide nanoparticles (TiO(2) NPs) has been demonstrated to result in pulmonary inflammation in animals; however, very little is known about the molecular mechanisms of pulmonary injury due to TiO(2) NPs exposure. The aim of this study was to evaluate the oxidative stress and molecular mechanism associated with pulmonary inflammation in(More)
Previous studies demonstrate that the exposure to titanium dioxide nanoparticles (TiO(2) NPs) damages the central nervous system of mice; however, very little is known about the effects of TiO(2) NPs on hippocampal apoptosis or its molecular mechanism. The present study investigated the molecular mechanism associated with hippocampal apoptosis in mice(More)
In an effort to examine signaling pathway of inflammation of the mouse liver caused by intragastric administration of titanium dioxide nanoparticles (NPs), we assessed Toll-like receptor-2 (TLR2), TLR-4, IκB kinase (IKK-α, IKK-β), IκB nucleic factor-κB (NF-κB), NF-κBP52, NF-κBP65, tumor necrosis factor-α (TNF-α), NF-κB-inducible kinase (NIK), interleukin-2(More)
While the hepatocyte apoptosis induced by TiO(2) nanoparticles (NPs) has been demonstrated, very little is known about the molecular mechanisms underlying this mouse liver apoptosis. In order to understand the hepatocyte apoptosis induced by intragastric administration of TiO(2) NPs for consecutive 60 days, the hepatocyte apoptosis, various oxidative stress(More)
Recent studies have demonstrated nanosized titanium dioxide (nano-TiO2)-induced fertility reduction and ovary injury in animals. To better understand how nano-TiO2 act in mice, female mice were exposed to 2.5, 5, and 10 mg/kg nano-TiO2 by intragastric administration for 90 consecutive days; the ovary injuries, fertility, hormone levels, and(More)
Numerous studies have demonstrated that the brain is one of the target organs in acute or chronic titanium dioxide (TiO2) nanoparticles (NPs) toxicity, and oxidative stress plays an important role in this process. However, whether brain oxidative injury responds to TiO2 NPs by activating the P38-nuclear factor-E2-related factor-2 (Nrf-2) pathway is not(More)
Exposure to titanium dioxide nanoparticles (TiO(2) NPs) elicits an adverse response such as oxidative damage. The molecular targets of TiO(2) NPs remain largely unidentified. In the present study, the function and signal pathway of nuclear factor erythroid 2 related factor 2 (Nrf2) in protection against TiO(2) NPs-induced oxidative stress in the mouse lung(More)
To understand the chronic spleen injury induced by intragastric administrations with 2.5, 5, and 10 mg kg(-1) body weight titanium dioxide nanoparticles (TiO(2) NPs) for 90 consecutive days, histopathological and ultrastructure changes, hematological parameters, lymphocyte subsets, the inflammatory, and apoptotic cytokines in the mouse spleen were(More)
Correction After publication of this article [1], the authors became aware of the fact that the original version of this article missed equal contributor and corresponding author information. Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications. which permits(More)