Learn More
There is great therapeutic interest in manipulating (either enhancing or suppressing) G protein-coupled receptor (GPCR) signal transduction. However, most current strategies are limited to pharmacological activation or blockade of receptors. Human gene therapy, including both overexpression and antisense approaches, may allow manipulation of GPCR signaling(More)
The determinants of "basal" activity of signaling pathways regulating cellular responses are poorly defined. One possibility is that cells release factors to establish the set-point of such pathways. Here we show that treatment of Madin-Darby canine kidney cells with the nucleotidase apyrase decreases basal arachidonic acid release and cAMP production(More)
Recent evidence suggests that many signaling molecules localize in microdomains of the plasma membrane, particularly caveolae. In this study, overexpression of adenylyl cyclase was used as a functional probe of G protein-coupled receptor (GPCR) compartmentation. We found that three endogenous receptors in neonatal rat cardiomyocytes couple with different(More)
A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse(More)
Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that(More)
Heterotrimeric GTP-binding proteins (G proteins) control cellular functions by transducing signals from the outside to the inside of cells. Regulator of G protein signaling (RGS) proteins are key modulators of the amplitude and duration of G protein-mediated signaling through their ability to serve as guanosine triphosphatase-activating proteins (GAPs). We(More)
1. As initially shown by Seamon and Daly, the diterpene forskolin directly activates adenylyl cyclase (AC) and raises cyclic AMP levels in a wide variety of cell types. In this review, we discuss several aspects of forskolin action that are often unappreciated. These include the utility of labeled forskolin as a means to quantitate the number of AC(More)
We investigated the effect of adenovirally mediated overexpression of adenylyl cyclase type 6 (AC6), a major form of AC expressed in mammalian heart, on G protein-coupled receptor regulation of cAMP production in neonatal rat ventricular myocytes. Following gene transfer of AC6, isoproterenol- and forskolin-stimulated increases in cAMP were markedly(More)
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the(More)
Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be(More)