Learn More
With the increasing requirement for analysis and separation of samples related to genomics, proteomics, metabolomics, pharmacology and agrochemistry, diverse stationary phases for liquid chromatography have been prepared by Cu(i)-catalyzed 1, 3-dipolar azide-alkyne cycloaddition reaction (CuAAC). It has been proved that CuAAC is a powerful tool for(More)
A combination of ferric chloride and sodium nitrite significantly improved the wet oxidation of the azo dye Acid Orange 7 (AO7) in acid aqueous media (pH 2.6) under moderate conditions (T=150 degrees C; oxygen pressure=0.5 MPa). To evaluate the catalytic system, wet oxidation of AO7 was carried out at temperatures between 90 and 150 degrees C and oxygen(More)
A silica-based stationary phase bearing both hydrophilic hydroxyl and amino groups was developed by covalently bonding a small molecular N,N-dimethylamino 1,3-propanediol moiety onto silica beads via copper(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition (CuAAC). This new stationary phase showed good HILIC characteristics and high column(More)
A highly efficient catalytic system without transition metals has been developed for aerobic alcohol oxidations. Under the optimal reaction conditions, various alcohol substrates were converted into their corresponding carbonyl compounds by air with TEMPO/Br2/NaNO2 as catalyst, especially the oxidation of benzylic alcohols to benzaldehydes in high yields.