Renee V. Goreham

Learn More
This paper presents a novel and facile method for the generation of efficient antibacterial coatings which can be applied to practically any type of substrate. Silver nanoparticles were stabilized with an adsorbed surface layer of polyvinyl sulphonate (PVS). This steric layer provided excellent colloidal stability, preventing aggregation over periods of(More)
Gradient surfaces are highly effective tools to screen and optimize cell- surface interactions. Here, the response of embryonic stem (ES) cell colonies to plasma polymer gradient surfaces is investigated. Surface chemistry ranged from pure allylamine (AA) plasma polymer on one end of the gradient to pure octadiene (OD) plasma polymer on the other end.(More)
Silver nanoparticles are well-known for their antibacterial properties. However, the detailed mechanism describing the interaction between the nanoparticles and a cell membrane is not fully understood, which can impede the use of the particles in biomedical applications. Here, a tethered bilayer lipid membrane has been used as a model system to mimic a(More)
Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares(More)
Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be(More)
Advanced approaches to direct the differentiation of embryonic stem cells are highly sought after. The surface-bound chemical gradient format is a powerful screening approach that can be deployed to study changes in stem cell behavior as a function of subtle changes in surface chemistry. Here, we investigate the spontaneous differentiation of cells derived(More)
  • 1