Rene Jimenez-Fabian

Learn More
Restoring natural walking for amputees has been increasingly investigated because of demographic evolution, leading to increased number of amputations, and increasing demand for independence. The energetic disadvantages of passive pros-theses are clear, and active prostheses are limited in autonomy. This paper presents the simulation, design and development(More)
Central pattern generators (CPGs) are known to play an important role in the generation of rhythmic movements in gait, both in animals and humans. The comprehension of their underlying mechanism has led to the development of an important family of algorithms at the basis of autonomous walking robots. Recently, it has been shown that human gait could be(More)
Current active leg prostheses do not integrate the most recent advances in Brain-Computer Interfaces (BCI) and bipedal robotics. Moreover, their actuators are seldom driven by the subject's intention. This paper aims at showing a summary of our current results in the field of human gait rehabilitation. In a first prototype, the main focus was on people(More)
This paper presents the development of the CYBERLEGs Alpha-Prototype prosthe-sis, a new transfemoral prosthesis incorporating a new variable stiffness ankle actuator based on the MACCEPA architecture, a passive knee with two locking mechanisms, and an energy transfer mechanism that harvests negative work from the knee and delivers it to the ankle to assist(More)
  • 1