Learn More
We propose an alternative method for solving the Transport of Intensity equation (TIE) from a stack of through-focus intensity images taken by a microscope or lensless imager. Our method enables quantitative phase and amplitude imaging with improved accuracy and reduced data capture, while also being computationally efficient and robust to noise. We use(More)
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak(More)
We demonstrate a Kalman filtering method to recover the phase of a thin object illuminated by partially coherent light. Our method is fast, efficient, robust to noise, and able to handle arbitrary source shapes when used in a microscope with Köhler illumination. Quantitative phase imaging has become an important tool in biology and surface metrology [1,2],(More)
Gaussian process (GP) regression is a nonparametric regression method that can be used to predict continuous quantities. Here, we show that the same technique can be applied to a class of phase imaging techniques based on measurements of intensity at multiple propagation distances, i.e. the transport of intensity equation (TIE). In this paper, we(More)
  • 1