Renaud M Brouquisse

Learn More
The effects of glucose starvation on the oxidation of fatty acids were studied in excised maize (Zea mays L.) root tips. After 24 hours of glucose starvation, the rate of oxidation of palmitic acid to CO(2) by the root tips was increased 2.5-fold. Different enzyme activities were tested in a crude particulate fraction from nonstarved root tips and those(More)
The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity(More)
The putative role of nitrate and nitrate reductase in the tolerance to prolonged hypoxia was investigated in tomato plants. Nitrogen nutrition has been modified either by deprivation of nitrate or by addition of tungstate—an inhibitor of nitrate reductase (NR)—in the culture medium. In the absence of nitrate as well as in the presence of tungstate, plant(More)
Excised maize (Zea mays) root tips were used to follow the effects of a prolonged glucose starvation. Respiration rate began to decrease immediately after excision, reaching 30 to 40% of its initial value after 20 hours, and then declined more slowly until death of the tissues, which occurred after 200 hours of starvation. During the whole process,(More)
The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3–300 μM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold(More)
In plants, sugars are the main respiratory substrates and important signaling molecules in the regulation of carbon metabolism. Sugar signaling studies suggested that sugar sensing involves several key components, among them hexokinase (HXK). Although the sensing mechanism of HXK is unknown, several experiments support the hypothesis that hexose(More)
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using(More)
Nitric oxide (NO) is a gaseous molecule that participates in numerous plant signalling pathways. It is involved in plant responses to pathogens and development processes such as seed germination, flowering and stomatal closure. Using a permeable NO-specific fluorescent probe and a bacterial reporter strain expressing the lacZ gene under the control of a(More)
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline --> betaine aldehyde --> betaine. Our previous experiments with intact chloroplasts, and in vivo(18)O(2) labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD(More)
Excised maize (Zea mays L.) root tips were used to monitor the effects of prolonged glucose starvation on nitrogen metabolism. Following root-tip excision, sugar content was rapidly exhausted, and protein content declined to 40 and 8% of its initial value after 96 and 192 h, respectively. During starvation the contents of free amino acids changed. Amino(More)