Learn More
BACKGROUND Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4(More)
In this paper we investigate plant photosynthesis and microbial fuel cells. We report the following: 1) we introduce and validate a novel multi-objective optimization algorithm, PMO2; 2) in photosynthesis we increase the yield of 135%, while in Geobacter sulfurreducens we determine the tradeoff for growth versus redox properties; 3) finally, we discuss(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract—We have studied the C3 photosynthetic carbon metabolism centering(More)
Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity(More)
It is widely recognized that major improvements are required in the methods currently being used to develop new therapeutic drugs. The time from initial target identification to commercialization can be 10-14 years and incur a cost in the hundreds of millions of dollars. Even after substantial investment, only 30-40% of the candidate compounds entering(More)
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with(More)
In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnological and basic science importance: the(More)
Morphological analysis of the retinal vessels by fundoscopy provides noninvasive means for detecting and staging systemic microvascular damage. However, full exploitation of fundoscopy in clinical settings is limited by paucity of quantitative, objective information obtainable through the observer-driven evaluations currently employed in routine practice.(More)
The information coming from biomedical ontologies and computational pathway models is expanding continuously: research communities keep this process up and their advances are generally shared by means of dedicated resources published on the web. In fact, such models are shared to provide the characterization of molecular processes, while biomedical(More)
C opyright © 2010 for the individual papers by the papers' authors. C opying permitted only for private and academic purposes. This volume is published and copyrighted by its editors. Abstract. The information about molecular processes is shared continuously in the form of runnable pathway collections, and biomedical ontologies provide a semantic context to(More)