Renato Naville Watanabe

Learn More
This study focuses on neuromuscular mechanisms behind ankle torque and EMG variability during a maintained isometric plantar flexion contraction. Experimentally obtained torque standard deviation (SD) and soleus, medial gastrocnemius, and lateral gastrocnemius EMG envelope mean and SD increased with mean torque for a wide range of torque levels. Computer(More)
Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological(More)
UNLABELLED Oscillations in the beta and gamma bands (13-30 Hz; 35-70 Hz) have often been observed in motor cortical outputs that reach the spinal cord, acting on motoneurons and interneurons. However, the frequencies of these oscillations are above the muscle force frequency range. A current view is that the transformation of the motoneuron pool inputs into(More)
A biologically-inspired model of the Soleus neuromuscular system was used to study the influences of musculotendon mechanical properties on the proprioceptive feedback and on the short-latency reflex. The model structure comprised: i) stochastic descending drive to a motoneuron pool; ii) a Hill-type muscle model; and iii) a muscle spindle model with its Ia(More)
The synaptic input to the motoneurons cannot be measured in humans due to ethical and technical difficulties. For these reasons realistic computational models of a motoneuron pool and the innervated muscle fibers (a “motor unit pool”) have an important role in the study of the human control of muscles. However such models are complex and their(More)
  • 1