Learn More
BACKGROUND The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other(More)
BACKGROUND Identification of specific genes and gene expression patterns important for bacterial survival, transmission and pathogenesis is critically needed to enable development of more effective pathogen control strategies. The stationary phase stress response transcriptome, including many sigmaB-dependent genes, was defined for the human bacterial(More)
BACKGROUND The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria(More)
BACKGROUND The genus Listeria includes two closely related pathogenic and non-pathogenic species, L. monocytogenes and L. innocua. L. monocytogenes is an opportunistic human foodborne and animal pathogen that includes two common lineages. While lineage I is more commonly found among human listeriosis cases, lineage II appears to be overrepresented among(More)
BACKGROUND While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis(More)
Salmonella is a widely distributed foodborne pathogen that causes tens of millions of salmonellosis cases globally every year. While the genomic diversity of Salmonella is increasingly well studied, our knowledge of Salmonella phage genomic diversity is still rather limited, despite the contributions of both lysogenic and lytic phages to Salmonella(More)
BACKGROUND While, traditionally, regulation of gene expression can be grouped into transcriptional, translational, and post-translational mechanisms, some mechanisms of rapid genetic variation can also contribute to regulation of gene expression, e.g., phase variation. RESULTS We show here that prokaryotes evolved to include homopolymeric tracts (HTs)(More)
Transcriptional regulation by alternative sigma (σ) factors represents an important mechanism that allows bacteria to rapidly regulate transcript and protein levels in response to changing environmental conditions. While the role of the alternative σ factor σB has been comparatively well characterized in L. monocytogenes, our understanding of the roles of(More)
Sporeformers in the order Bacillales are important contributors to spoilage of pasteurized milk. While only a few Bacillus and Viridibacillus strains can grow in milk at 6°C, the majority of Paenibacillus isolated from pasteurized fluid milk can grow under these conditions. To gain a better understanding of genomic features of these important spoilage(More)
Alternative σ factors are important transcriptional regulators in bacteria. While σB has been shown to control a large regulon and play important roles in stress response and virulence in the pathogen Listeria monocytogenes, the function of σH has not yet been well defined in Listeria, even though σH controls a large regulon in the closely related(More)