Renato Contreras

Learn More
This work deals with exploring some empirical scales of nucleophilicity. We have started evaluating the experimental indices of nucleophilicity proposed by Legon and Millen on the basis of the measure of the force constants derived from vibrational frequencies using a probe dipole H-X (X = F,CN). The correlation among some theoretical parameters with this(More)
We have systematically studied NMOSFETs, MOSCAPs, and the interfacial chemistry on GaAs (100), (110), (111)A and (111)B-four different crystalline surfaces with direct ALD Al2O3. We found that a much higher drain current on GaAs(111)A NMOSFET can be achieved compared to that obtained on the other 3 surfaces. Also, the results of MOSCAPs and the interfacial(More)
The coordination compounds of streptomycin (St), Co2(St)Cl4.13H2O (2), Co2(St)(NO3)4.7H2O (3), Ni2(St)Cl4.14H2O (4), Ni2(St)(NO3)4.14H2O (5), Cu2(St)Cl4.6H2O (6), and Ca(St)Cl2.8H2O (7) have been synthesized by the reaction of streptomycin sulfate (1) with three equivalents of the corresponding inorganic salt. The compounds (2)-(7) were characterized by(More)
Continuum solvent effect on the electrophilicity index recently proposed by Parr and co-workers (Parr, R. G.; von Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922) is discussed in detail. Solvent effect is introduced using the self-consistent isodensity polarized continuum model (SCI-PCM). A linear relationship is found between the change in(More)
We introduce and test a nucleophilicity index as a new descriptor of chemical reactivity. The index is derived from a perturbation model for the interaction between the nucleophile and a positive test charge. The computational implementation of the model uses an isoelectronic process involving the minimum values of the electronic part of the perturbed(More)
The electronic properties of a chemical model that mimics the His-57...Asp-102 catalytic residues of alpha- chymotrypsine during the transition from normal hydrogen bond to short and strong hydrogen-bond regimes are presented. The results suggest that upon a global external stimulus induced by compression, the system response is the transfer of the(More)
The quantum mechanical SMD continuum universal solvation model can be applied to predict the free energy of solvation of any solute in any solvent following specification of various macroscopic solvent parameters. For three ionic liquids where these descriptors are readily available, the SMD solvation model exhibits a mean unsigned error of 0.48 kcal/mol(More)
Four different ways to condense the Fukui function are compared. Three of them perform a numerical integration over different basins to define the condensed Fukui function, and the other one is the most traditional Fukui function using Mulliken population analysis. The basins are chosen to be the basins of the electron density (AIM), the basins of the(More)
The electron localization function (ELF) has been separated in its sigma and pi components. The topological analysis of the new ELFsigma and ELFpi functions has been used to quantify the concept of resonance. The highest bifurcation values of these functions describe in a correct way the aromaticity of classical ring molecules and some new aromatic(More)
Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent(More)