Renata Rosito Tonelli

Learn More
Trypanosoma cruzi trypomastigotes continuously shed into the medium plasma membrane fragments sealed as vesicles enriched in glycoproteins of the gp85 and trans-sialidase (TS) superfamily and alpha-galactosyl-containing glycoconjugates. Injection of a vesicle fraction into BALB/c mice prior to T. cruzi infection led to 40% of deaths on the 16thday(More)
Using as the host cell, a proline-requiring mutant of Chinese hamster ovary cell (CHO-K1), it was possible to arrest the differentiation of amastigote forms of Trypanosoma cruzi at the intermediate intracellular epimastigote-like stage. Complete differentiation to the trypomastigote stage was obtained by addition of L-proline to the medium. This effect was(More)
The "amino acid/auxin permeases" is probably the most represented family of transporters in the Trypanosoma cruzi genome. Using a high-throughput searching routine and preliminary data from the T. cruzi genome project, more than 15,000 sequences were iteratively assembled into contigs, and 60 open reading frames corresponding to different putative amino(More)
L-proline is the main energy source in insect vector stages of most trypanosomatids, including Trypanosoma cruzi epimastigotes. This is the first biochemical description of two active proline transporter systems in T. cruzi. Uptake of this amino acid occurred by a low affinity system B and a high affinity system A. System B consistently appeared more(More)
Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific(More)
Chagas' disease is a potentially life-threatening illness caused by the unicellular protozoan parasite Trypanosoma cruzi. It is transmitted to humans by triatomine bugs where T. cruzi multiplies and differentiates in the digestive tract. The differentiation of proliferative and non-infective epimastigotes into infective metacyclic trypomastigotes(More)
Trypanosoma cruzi, the agent of Chagas' disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T. cruzi, nothing is known about how the mammalian stages(More)
Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term(More)
BACKGROUND Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the(More)
Chagas' disease is a chronic, debilitating and incapacitating illness, caused by the protozoan parasite Trypanosoma cruzi when infective trypomastigotes invade host cells. Although the mechanism of trypomastigotes interaction with mammalian cells has been intensively studied, a final and integrated picture of the signal transduction mechanisms involved(More)