Renata Matlakowska

Learn More
AIMS The aim of this study was the isolation and characterization of micro-organisms from Lubin copper mine potentially useful in biotechnology of metal recovery from copper bearing black shale. METHODS AND RESULTS Eight bacterial strains were isolated from black shale ore. Phylogenetic analysis based on 16S rRNA gene homology showed that five strains(More)
The Upper Permian polymetallic, organic-rich Kupferschiefer black shale in the Fore-Sudetic Monocline is acknowledged to be one of the largest Cu-Ag deposits in the world. Here we report the results of the first study of bioweathering of this sedimentary rock by indigenous heterotrophic bacteria. Experiments were performed under laboratory conditions,(More)
AIM The aim of the present study was to investigate the phenotypic and genotypic variability of two strains of Acidithiobacillus ferrooxidans genus during growth in sewage sludge. METHODS AND RESULTS Compared with A. ferrooxidans cells grown in mineral medium, those grown in sewage sludge demonstrated remarkable changes in ultrastructure (transmission(More)
The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic(More)
In this paper, we present our method for the measurement of contact angles on the surface of minerals during the bioleaching process because the standard deviation obtained in our measurements achieved unexpectedly low error. Construction of a goniometer connected with a specially prepared computer program allowed us to repeat measurements several times(More)
The role of indigenous microorganisms in the biotransformation of refractory organic-rich copper-bearing black shale ore (Kupferschiefer) was confirmed in laboratory experiments. The persistent shale's organic matter was utilized by a mixture of bacterial strains as the sole carbon and energy source, and bacterial growth was accompanied by chemical and(More)
Exopolymers produced by bacteria cells during copper bioleaching from copper sulphides could modify the relative cell surface charge and thus change the relation between cell and substratum surfaces. All examined bacterial strains showed a hydrophilic cell surface independent of relative surface charge and adhesion depended on presence or absence of(More)
Halomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental(More)
This study describes the yeast Rhodotorula mucilaginosa strain LM9 isolated from copper-bearing, organic-rich Kupferschiefer black shale and its role in copper biotransformation. Strain LM9 exhibited great ability to simultaneously mobilize and immobilize copper from this sedimentary rock. In addition, it showed considerable resistance to copper and high(More)
This study provides the first evidence for the direct biodegradation of persistent organic matter extracted from the organic-rich polymetallic black shale ore Kupferschiefer, one of the most important sources of metals in the world. It was demonstrated that an enriched community of indigenous heterotrophic microorganisms isolated from black shale grown(More)