Learn More
Surface modification of argon-plasma-pretreated poly(ethylene terephthalate) (PET) films via UV-induced graft copolymerization with acrylic acid (AAc) was carried out. Galactosylated surfaces were then obtained by coupling a galactose derivative (1-O-(6'-aminohexyl)-D-galactopyranoside) to the AAc graft chains with the aid of a water-soluble carbodiimide(More)
To achieve a combination of spatial specificity in a passive manner with a stimuli-response targeting mechanism, a temperature-responsive polymeric micelle was prepared using block copolymers of poly(N-isopropylacrylamide-b-methyl methacrylate) (PNIPAAm-b-PMMA). The critical micelle concentration of amphiphilic block copolymers in aqueous solution was(More)
Cellular uptake and nuclear localization are two barriers to gene delivery. Here, we designed new gene delivery carriers with an N-terminal stearylated (STR) nuclear localization signal (NLS), PKKKRKV, present in the Simian Virus 40 large T antigen with the aim to overcome limitations, such as cell membrane and nuclear pores, offering attractive(More)
A novel strategy was developed to prepare nanospheres and vesicles as drug carriers. The drug-loaded pectin nanospheres and vesicles were fabricated in aqueous media containing Ca2+ and CO3(2-) ions under very mild conditions, which did not involve any surfactant. Through adjusting the preparation conditions, nanosized drug delivery systems with diverse(More)
A novel seven-arm star block copolymer poly(L-lactide-star block-N-isopropylacrylamide) (PLLA-sb-PNIPAAm), comprised of a hydrophobic poly(L-lactide) (PLLA) arm and an average of six hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) arms, was designed and synthesized. The amphiphilic PLLA-sb-PNIPAAm copolymer was capable of self-assembling into nano-sized(More)
A series of chitosan-based oligoamine polymers was synthesized from N-maleated chitosan (NMC) via Michael addition with diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and linear polyethylenimine (M(n) 423), respectively. The resulted polymers exhibited well binding ability to condense plasmid DNA to form complexes with(More)
A novel dual-pH sensitive charge-reversal strategy is designed to deliver antitumor drugs targeting to tumor cells and to further promote the nuclei internalization by a stepwise response to the mildly acidic extracellular pH (≈6.5) of a tumor and endo/lysosome pH (≈5.0). Poly(L-lysine)-block-poly(L-leucine) diblock copolymer is synthesized and the lysine(More)
Arginine-glycine-aspartic acid (RGD) ligand is often chemically attached to polycation vector to improve the transfection efficiency. However, the chemical reaction may reduce or even inactivate the biological activities of peptides. In order to retain the targeting ability and biological activities, the RGD peptide was noncovalently introduced into(More)
A four-arm star block copolymer, comprised of a hydrophobic PMMA arm and an average of three hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) arms were designed and synthesized from the molecular level. The amphiphilic star block copolymer is capable of self-assembling into micelles in water, which was confirmed by FT-IR, (1)H NMR and fluorescence(More)
In this study, the low molecular weight branched polyethylenimine (PEI) (800 Da PEI) was grafted to the biodegradable and biocompatible carboxymethyl dextran (CMD) to obtain CMD-g-PEI, and the plasmid DNA was complexed with CMD-g-PEI polycation to form the polyion complex. The acid-base titration profile showed that the CMD-g-PEI had endosomal disruption(More)