Learn More
INTRODUCTION Patients with congenital heart disease frequently require graft material for repair of cardiac defects. However, currently available grafts lack growth potential and are noncontractile and thrombogenic. We have developed a viable cardiac graft that contracts spontaneously in tissue culture by seeding cells derived from fetal rat ventricular(More)
BACKGROUND Autologous bone marrow cells (BMCs) transplanted into ventricular scar tissue may differentiate into cardiomyocytes and restore myocardial function. This study evaluated cardiomyogenic differentiation of BMCs, their survival in myocardial scar tissue, and the effect of the implanted cells on heart function. METHODS AND RESULTS IN VITRO(More)
BACKGROUND Fetal rat cardiomyocytes transplanted into left ventricular scar tissue of the adult rat heart limit scar expansion and improve heart function. This study determined morphologic changes of transplanted fetal rat cardiomyocytes in myocardial scar tissue. METHODS AND RESULTS The left ventricles of 500-g Sprague-Dawley rats were cryodamaged. At 4(More)
Recent studies have demonstrated the feasibility of transplanting fetal mouse cardiomyocytes into the hearts of adult syngeneic mice. However, the function of the transplanted cardiomyocytes and their capacity to survive in fibrous connective tissue were not assessed. In the present study, we evaluated the viability and contractility of transplanted fetal(More)
OBJECTIVES Currently available graft materials for repair of congenital heart defects cause significant morbidity and mortality because of their lack of growth potential. An autologous cell-seeded graft may improve patient outcomes. We report our initial experience with the construction of a biodegradable graft seeded with cultured rat or human cells and(More)
Trolox, a hydrophilic analogue of alpha-tocopherol, was reported to scavenge peroxyl radicals better than vitamin E in sodium dodecyl sulfate micelles and in liposomes. However, it was not known if Trolox protects human cells against oxyradical damage or if it acts as an antioxidant there. Here we demonstrate that Trolox prolonged substantially the survival(More)
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator(More)
OBJECTIVE The aim was to test for "ischaemic" preconditioning in monolayer cultures of quiescent human ventricular cardiomyocytes. METHODS Stabilised cardiomyocytes (n = 8 plates per group) were preconditioned with varying periods of simulated ischaemia and reperfusion, followed in all groups by 90 min of sustained "ischaemia" with or without 30 min of(More)
OBJECTIVE We have previously reported that fetal cardiomyocyte transplantation into myocardial scar improves heart function. The mechanism by which this occurs, however, has not been elucidated. To investigate possible mechanisms by which cell transplantation may improve heart function, we compared cardiac function after transplantation of 3 different fetal(More)
UNLABELLED BACKGROUND The combination of myocardial cell transplantation and angiogenic gene transfer may improve postinfarction left ventricular (LV) perfusion. We evaluated the angiogenic effect of heart cells transfected with vascular endothelial growth factor (VEGF) and transplanted into a myocardial scar. METHODS AND RESULTS Donor rat heart cells(More)