René-Jean Essiambre

Learn More
The instantaneous optical Kerr effect in optical fibers is a nonlinear phenomenon that can impose limits on the ability of fiber-optic communication systems to transport information. We present here a conservative estimate of the "fiber channel" capacity in an optically routed network. We show that the fiber capacity per unit bandwidth for a given distance(More)
| Since the first deployments of fiber-optic communication systems three decades ago, the capacity carried by a single-mode optical fiber has increased by a staggering 10 000 times. Most of the growth occurred in the first two decades with growth slowing to ten times in the last decade. Over the same three decades, network traffic has increased by a much(More)
The mutual information between a complex-valued channel input and its complex-valued output is decomposed into four parts based on polar coordinates: an amplitude term, a phase term, and two mixed terms. Numerical results for the additive white Gaussian noise (AWGN) channel with various inputs show that, at high signal-to-noise ratio (SNR), the amplitude(More)
Mode-division multiplexing over 33-km few-mode fiber is investigated. It is shown that 6×6 MIMO processing can be used to almost completely compensate for crosstalk and intersymbol interference due to mode coupling in a system that transmits uncorrelated 28-GBaud QPSK signals on the six spatial and polarization modes supported by a novel few-mode fiber.
Introduction: All-optical wavelength converters (AOWC) are envisioned to be part of future high-speed networks. In particular, they might replace optical-to-electrical-to-optical (OEO) wavelength translator units in optical crossconnects [1]. However, to be practical, AOWCs must be able to convert signals that have been degraded during transmission over(More)
We study intermodal four-wave mixing (FWM) in few-mode fibers in the presence of birefringence fluctuations and random linear mode coupling. Two different intermodal FWM processes are investigated by including all nonlinear contributions to the phase-matching condition and FWM bandwidth. We find that one of the FWM processes has a much larger bandwidth than(More)
We propose and evaluate a metric for the value proposition of bit rate adaptive transmission in the form of the quasi-static multiplicative increase in network traffic that could be supported by an optical network without increasing the number of wavelength channels or spectral bandwidth. Under the assumption of idealized bit rate adaptive transmission, we(More)