René H . Wijffels

Learn More
Microalgae-derived lipids are an alternative to vegetable and fossil oils, but lipid content and quality vary among microalgae strains. Selection of a suitable strain for lipid production is therefore of paramount importance. Based on published results for 96 species, nine strains were selected to study their biomass, total fatty acid, and triacylglycerol(More)
Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration(More)
There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge(More)
Enclosed outdoor photobioreactors need to be developed and designed for large-scale production of phototrophic microorganisms. Both light regime and photosynthetic efficiency were analyzed in characteristic examples of state-of-the-art pilot-scale photobioreactors. In this study it is shown that productivity of photobioreactors is determined by the light(More)
Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 micromol photons m(-2) s(-1) with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used in this work is similar to the maximal irradiance on(More)
UNLABELLED Worldwide, microalgal biofuel production is being investigated. It is strongly debated which type of production technology is the most adequate. Microalgal biomass production costs were calculated for 3 different micro algal production systems operating at commercial scale today: open ponds, horizontal tubular photobioreactors and flat panel(More)
Hydrogen is a clean energy alternative to fossil fuels. Photosynthetic bacteria produce hydrogen from organic compounds by an anaerobic light-dependent electron transfer process. In the present study hydrogen production by three photosynthetic bacterial strains (Rhodopseudomonas sp., Rhodopseudomonas palustris and a non-identified strain), from four(More)
The biomass yield on light energy of Dunaliella tertiolecta and Chlorella sorokiniana was investigated in a 1.25- and 2.15-cm light path panel photobioreactor at constant ingoing photon flux density (930 µmol photons m−2 s−1). At the optimal combination of biomass density and dilution rate, equal biomass yields on light energy were observed for both light(More)
A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic phase. Mixing of the cells and extraction were performed by(More)
beta-Carotene is overproduced in the alga Dunaliella salina in response to high light intensities. We have studied the effects of a sudden light increase on carotenoid and fatty acid metabolism using a flat panel photobioreactor that was run in turbidostat mode to ensure a constant light regime throughout the experiments. Upon the shift to an increased(More)