Remy J. H. Albrecht

Learn More
Cocomposting of green wastes and sewage sludges is a complex process involving rapid biological and chemical changes. The objective of the study was to assess the usefulness of near-infrared reflectance spectroscopy (NIRS) to characterize these changes, as an alternative to standard procedures which are often time-consuming and laborious. Samples obtained(More)
Changes in composts of sewage sludges and green wastes were analysed by near infrared reflectance spectroscopy (NIRS) and chemical analysis with 426 samples representative of six stages of composting: 8, 20, 35, 75, 135 and 180 days. Maturity of compost was assessed through changes in C:N ratio. Results of spectroscopic properties (200 wavelengths) were(More)
Microbial communities in sewage sludge and green waste co-composting were investigated using culture-dependent methods and community level physiological profiles (CLPP) with Biolog Microplate. Different microbial groups characterized each stage of composting. Bacterial densities were high from beginning to end of composting, whereas actinomycete densities(More)
The humification of organic matter during composting was studied by the quantification and monitoring of the evolution of humic substances (Humic Acid-HA and Fulvic Acid-FA) by UV spectra deconvolution (UVSD) and near-infrared reflectance spectroscopy (NIRS) methods. The final aim of this work was to compare UVSD to NIRS method, already applied on the same(More)
Given its high sensitivity and non-destructive nature, fluorescence excitation-emission matrix (EEM) spectroscopy is widely used to differentiate changes and transformations of dissolved or water-extracted organic matter (OM) in natural environments. The same technique applied directly on solid samples (solid-phase fluorescence spectroscopy, SPF-EEM)(More)
Northern peatlands are large repositories of carbon. Peatland vascular plant community composition has been functionally associated to a set of biogeochemical processes such as carbon cycling. Yet, we do not fully understand to what extent vascular plant functional types (PFTs) affect the quality of dissolved organic matter, and if there is any feedback on(More)
At the previous ADASS Conference (Oknyanskij, 1997a) we considered and used a new algorithm for time-delay investigations in the case when the time delay was a linear function of time and the echo response intensity was a power-law function of the time delay. We applied this method to investigate optical-to-radio delay in the double quasar 0957+561(More)
Extreme climate events are predicted to become more frequent and intense. Their ecological impacts, particularly on carbon cycling, can differ in relation to ecosystem sensitivity. Peatlands, being characterized by peat accumulation under waterlogged conditions, can be particularly sensitive to climate extremes if the climate event increases soil(More)