Learn More
MOTIVATION Human single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in human population. One of the most important goals of SNP projects is to understand which human genotype variations are related to Mendelian and complex diseases. Great interest is focused on non-synonymous coding SNPs (nsSNPs) that are responsible of(More)
MOTIVATION The prediction of protein stability change upon mutations is key to understanding protein folding and misfolding. At present, methods are available to predict stability changes only when the atomic structure of the protein is available. Methods addressing the same task starting from the protein sequence are, however, necessary in order to(More)
SNPs&GO is a method for the prediction of deleterious Single Amino acid Polymorphisms (SAPs) using protein functional annotation. In this work, we present the web server implementation of SNPs&GO (WS-SNPs&GO). The server is based on Support Vector Machines (SVM) and for a given protein, its input comprises: the sequence and/or its three-dimensional(More)
Quantitative data from experiments of gene expression are often normalized through levels of housekeeping genes transcription by assuming that expression of these genes is highly uniform. This practice is being questioned as it becomes increasingly clear that the level of housekeeping genes expression may vary considerably in certain biological samples. To(More)
BACKGROUND Peptidases are proteolytic enzymes responsible for fundamental cellular activities in all organisms. Apparently about 2-5% of the genes encode for peptidases, irrespectively of the organism source. The basic peptidase function is "protein digestion" and this can be potentially dangerous in living organisms when it is not strictly controlled by(More)
  • 1