Learn More
Recent evidence suggests that some brain areas act as hubs interconnecting distinct, functionally specialized systems. These nexuses are intriguing because of their potential role in integration and also because they may augment metabolic cascades relevant to brain disease. To identify regions of high connectivity in the human cerebral cortex, we applied a(More)
The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The(More)
Memory function is likely subserved by multiple distributed neural networks, which are disrupted by the pathophysiological process of Alzheimer's disease (AD). In this study, we used multivariate analytic techniques to investigate memory-related functional magnetic resonance imaging (fMRI) activity in 52 individuals across the continuum of normal aging,(More)
BACKGROUND The order and magnitude of pathologic processes in Alzheimer's disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimer's disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease.(More)
Functional magnetic resonance imaging (fMRI) was used to study memory-associated activation of medial temporal lobe (MTL) regions in 32 nondemented elderly individuals with mild cognitive impairment (MCI). Subjects performed a visual encoding task during fMRI scanning and were tested for recognition of stimuli afterward. MTL regions of interest were(More)
Alzheimer's disease (AD) is associated with neurodegeneration in vulnerable limbic and heteromodal regions of the cerebral cortex, detectable in vivo using magnetic resonance imaging. It is not clear whether abnormalities of cortical anatomy in AD can be reliably measured across different subject samples, how closely they track symptoms, and whether they(More)
Alzheimer's disease (AD) has been associated with functional alterations in a distributed network of brain regions linked to memory function, with a recent focus on the cortical regions collectively known as the default network. Posterior components of the default network, including the precuneus and posterior cingulate, are particularly vulnerable to early(More)
OBJECTIVE To use fMRI to investigate whether hippocampal and entorhinal activation during learning is altered in the earliest phase of mild cognitive impairment (MCI). METHODS Three groups of older individuals were studied: 10 cognitively intact controls, 9 individuals at the mild end of the spectrum of MCI, and 10 patients with probable Alzheimer disease(More)
Amyloid deposition is present in 20-50% of nondemented older adults yet the functional consequences remain unclear. The current study found that amyloid accumulation is correlated with functional disruption of the default network as measured by intrinsic activity correlations. Clinically normal participants (n = 38, aged 60-88 years) were characterized(More)
The hallmark clinical symptom of early Alzheimer's disease (AD) is episodic memory impairment. Recent functional imaging studies suggest that memory function is subserved by a set of distributed networks, which include both the medial temporal lobe (MTL) system and the set of cortical regions collectively referred to as the default network. Specific regions(More)