Reinhard Männer

Learn More
This paper presents an efficient implementation for correlation based stereo. Research in this area can roughly be divided in two classes: improving accuracy regardless of computing time and scene reconstruction in real-time. Algorithms achieving video frame rates must have strong limitations in image size and disparity search range, whereas high quality(More)
In this paper the optimal parameter setting of Genetic Algorithms (GAs) is investigated. Particular attention has been paid to the dependence of the mutation probability PM upon two parameters, the dimension of the configuration space 1 and the population size M. Assuming strict conditions on both the problem to be optimized and the GA, PM converges to 0 as(More)
Multitasking on an FPGA-based processor is one possibility to explore the efficacy of reconfigurable computing. Conventional computers and operating systems have demonstrated the many advantages of sharing computational hardware by several tasks over time. The ability to do run-time configuration and readback of FPGAs in a coprocessor architecture allows(More)
We describe a fast ab initio method for modeling local segments in protein structures. The algorithm is based on a divide and conquer approach and uses a database of precalculated look-up tables, which represent a large set of possible conformations for loop segments of variable length. The target loop is recursively decomposed until the resulting(More)
Architecture and applications of a massively parallel processor are described. Volumes of 256×256×128 voxels can be visualized at a frame rate of 10 Hz using volume oriented visualization algorithms. A prototype of the scalable and modular system is currently set up. 3D rotation around an arbitrary rotation axis, perspective, zooming, and arbitrary gray(More)
This paper investigates the usage of floating-point arithmetic on FPGAs for N-Body simulation in natural science. The common aspect of these applications is the simple computing structure where forces between a particle and its surrounding particles are summed up. The role of reduced precision arithmetic is discussed, and our implementation of a(More)
A general purpose neurocomputer, SYNAPSE-1, which exhibits a multiprocessor and memory architecture is presented. It offers wide flexibility with respect to neural algorithms and a speed-up factor of several orders of magnitude--including learning. The computational power is provided by a 2-dimensional systolic array of neural signal processors. Since the(More)