Reinhard Lührmann

Learn More
HIV-1 Rev protein directs nuclear export of pre-mRNAs and mRNAs containing its binding site, the Rev response element (RRE). To define how Rev acts, we used conjugates between bovine serum albumin (BSA) and peptides comprising the Rev activation domain (BSA-R). BSA-R inhibited Rev-mediated nuclear RNA export, whereas a mutant activation domain peptide(More)
Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with(More)
Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to(More)
An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated(More)
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation(More)
Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis(More)
The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1,(More)
RNA silencing processes are guided by small RNAs known as siRNAs and microRNAs (miRNAs) . They reside in ribonucleoprotein complexes, which guide the cleavage of complementary mRNAs or affect stability and translation of partial complementary mRNAs . Argonaute (Ago) proteins are at the heart of silencing effector complexes and bind the single-stranded siRNA(More)
Arginine residues in RG-rich proteins are frequently dimethylated posttranslationally by protein arginine methyltransferases (PRMTs). The most common methylation pattern is asymmetrical dimethylation, a modification important for protein shuttling and signal transduction. Symmetrically dimethylated arginines (sDMA) have until now been confined to the myelin(More)
We describe the isolation and molecular characterization of seven distinct proteins present in human [U4/U6.U5] tri-snRNPs. These proteins exhibit clear homology to the Sm proteins and are thus denoted LSm (like Sm) proteins. Purified LSm proteins form a heteromer that is stable even in the absence of RNA and exhibits a doughnut shape under the electron(More)